计算机研究与应用

计算机研究与应用

《计算机研究与应用》系开放获取期刊,反映国内外计算机应用研究的主流技术、热点技术及最新发展趋势。主要刊登本学科最新科研成果和重大应用成果。本刊支持思想创新、学术创新,倡导科学,繁荣学术,集学术性、思想性为一体,旨在给世界范围内的科学家、学者、科研人员提供一个传播、分享和讨论计算机领域内不同方向问题与成果交流的学术平台。
ISSN: 3078-9850
qikan18@ccnpub.com
(邮箱投稿时,请说明投稿期刊名)

《计算机研究与应用》在线投稿系统

*文章题目:
*作者姓名:
*电子邮箱:
*通讯地址:
*联系方式:

  备      注:

*上传稿件:

支持上传.doc,.docx,.pdf,.txt,.wps文件

投稿须知:

1、审稿结果将于1~7个工作日以邮件告知,请注意查收(包含录用通知书、审稿意见、知网CNKI查重报告)。

2、提交投稿后,若7个工作日之内未接到录用通知,则说明该文章未被录用,请另投他刊。

3、凡投寄本刊稿件,如在内容上有侵权行为或不妥之处,均应文责自负。本刊有权对来稿进行文字编辑、加工和修改,如不同意,请附说明,以便妥善处理。

4、多作者文稿署名时须征得其他作者同意,排好先后次序,通知用稿后不再改动。

5、凡投往本刊稿件一经录用发表,其版权归本刊所有。

6、本刊已全文录入中国知网、万方、维普等数据库,如作者不同意被收录,请提前申明,未申明者,本刊一律视为同意被收录。

7、请勿一稿多投。



提示文字!

注:我们将于1~7个工作日告知您审稿结果,请耐心等待;

您也可以在官网首页点击“查看投稿进度”输入文章题目,查询稿件实时进程。

从语义洞察到商业转化-大模型赋能营销潜力挖掘的新范式研究 下载:0 浏览:60
摘要:

本研究聚焦湖北电信10001短信营业厅在意图识别上的误匹配问题,提出一套融合语义匹配与大模型推理的混合框架。用户通过短信咨询套餐变更、话费查询等业务时,由于自然语言的模糊性,现有系统常出现误匹配,既影响用户体验,也降低了企业服务效率。为解决这一难题,研究构建了智能短厅混合推理框架。在算法层面,引入 Jaccard 算法计算用户短信与标准文本的相似度,快速筛选初步匹配的业务类别;对经典的 BERT 模型进行微调,利用历史短信数据优化参数,提升语义理解能力;结合 Qwen2.5 RAG 技术,从业务知识库中检索信息,生成更准确的回复。针对训练数据不足的问题,采用同义词替换、句式变换等方法扩充数据集。同时,将 Llama 70b 模型蒸馏到 Llama1b,在减少模型体积的同时保持关键知识,降低部署成本。系统引入Jaccard算法进行初筛,结合微调BERT与Qwen2.5-RAG实现深度语义解析,并通过Llama模型蒸馏提升部署效率。在12类标签场景下,微调与蒸馏结合的方案显著提升了意图识别准确率,混合推理框架总体识别率达到77.04%,优于传统方案。


版权所有 © 2025 世纪中文出版社  京ICP备2024086036号-2