检 索
学术期刊
切换导航
首页
文章
期刊
投稿
首发
学术会议
图书中心
新闻
新闻动态
科学前沿
合作
我们
一封信
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
我要投稿
查看投稿进度
学术期刊
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
在线客服
客服电话:
400-188-5008
客服邮箱:
service@ccnpub.com
投诉举报:
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享
请选择
目标期刊
首页
期刊
文章
基于原型网络的细粒度实体分类方法
下载:
48
浏览:
350
任权
《中文研究》
2020年8期
摘要:
细粒度实体分类任务作为命名实体识别任务的扩展,其目的是根据指称及其上下文,发掘实体更细粒度的类别含义。由于细粒度实体语料的标注代价较大,标注错误率较高,因此该文研究了在少量样本情况下的细粒度实体分类方法。该文首先提出了一种特征提取模型,能够分别从单词层面以及字符层面提取实体信息,随后结合原型网络将多标签分类任务转化为单标签分类任务,通过缩小空间中同类样本与原型的距离实现分类。该文使用少样本学习以及零样本学习两种设置在公开数据集FIGER(GOLD)上进行了实验,在少样本学习的设置下,较基线模型在三个指标中均有提升,其中macro-F1的提升最大,为2.4%。
[1/1]
|<
<
1
>
>|
在线客服::
点击联系客服
联系电话::
400-188-5008
客服邮箱::
service@ccnpub.com
投诉举报::
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享