检 索
学术期刊
切换导航
首页
文章
期刊
投稿
首发
学术会议
图书中心
新闻
新闻动态
科学前沿
合作
我们
一封信
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
我要投稿
查看投稿进度
学术期刊
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
在线客服
客服电话:
400-188-5008
客服邮箱:
service@ccnpub.com
投诉举报:
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享
请选择
目标期刊
首页
期刊
文章
基于正交约束的分块不完整多视角聚类
下载:
57
浏览:
371
姜健伟
殷俊
《人工智能研究》
2020年2期
摘要:
在处理数据特征提取问题时,已有的基于非负矩阵分解的不完整多视角聚类算法对局部特征的提取不够准确.针对此问题,文中提出基于正交约束的分块不完整多视角聚类(CIMVCO).利用非负矩阵分解获得所有视角的潜在特征矩阵,通过加入正交约束得到更好的局部特征.对于各个视角的缺失样本,CIMVCO给予较小的权重以减小缺失数据的影响.为了解决大规模数据的聚类问题,CIMVCO逐块处理数据以减少内存需求和处理时间.在Reuters和Digit数据集上的实验验证CIMVCO的有效性.
[1/1]
|<
<
1
>
>|
在线客服::
点击联系客服
联系电话::
400-188-5008
客服邮箱::
service@ccnpub.com
投诉举报::
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享