请选择 目标期刊

融入丰富信息的高性能神经实体链接 下载:40 浏览:373

李明扬 姜嘉伟 孔芳 《当代中文学刊》 2020年1期

摘要:
歧义的存在使得实体链接任务需要大量信息的支撑。已有研究主要使用两类信息,即实体表述所在的文本信息和外部的知识库信息。但已有研究对信息的使用存在以下两个问题:首先,最新通用知识库规模更大、覆盖面更广,但目前的实体链接模型却未从中受益,其性能没有得到相应提升;其次,表述所在的文本信息既包含表述所处的局部上下文信息,也包含文本主题之类的全局信息,文本自身信息的利用率还需进一步提高。针对第一个问题,该文给出了一个融合文本相关度和先验知识的实体候选集抽取策略,提高了对知识库中有效知识的提取;针对第二个问题,该文给出了一个融合局部和全局信息的自注意力机制与高速网络相结合的神经网络实体链接框架。在6个实体链接公开数据集上的对比实验表明了该文提出方案的有效性,在最新的通用知识库上该文给出的实体链接模型取得了目前最好的性能。

注意力增强的双向LSTM情感分析 下载:34 浏览:255

关鹏飞1 李宝安1 吕学强1 周建设2 《当代中文学刊》 2019年4期

摘要:
在基于深度学习的情感分析工作中,传统的注意力机制主要以串行的方式作为其他模型的下一层,用于学习其他神经网络模型输出的权重分布。该文在探究使用深度学习进行句子级情感分析任务的基础上,提出一种注意力增强的双向LSTM模型。模型使用注意力机制直接从词向量的基础上学习每个词对句子情感倾向的权重分布,从而学习到能增强分类效果的词语,使用双向LSTM学习文本的语义信息。最终,通过并行融合的方式提升分类效果。通过在NLPCC 2014情感分析语料上进行测试,该模型的结果优于其他句子级情感分类模型。

融入丰富信息的高性能神经实体链接 下载:49 浏览:451

李明扬 姜嘉伟 孔芳 《冶金学报》 2020年1期

摘要:
歧义的存在使得实体链接任务需要大量信息的支撑。已有研究主要使用两类信息,即实体表述所在的文本信息和外部的知识库信息。但已有研究对信息的使用存在以下两个问题:首先,最新通用知识库规模更大、覆盖面更广,但目前的实体链接模型却未从中受益,其性能没有得到相应提升;其次,表述所在的文本信息既包含表述所处的局部上下文信息,也包含文本主题之类的全局信息,文本自身信息的利用率还需进一步提高。针对第一个问题,该文给出了一个融合文本相关度和先验知识的实体候选集抽取策略,提高了对知识库中有效知识的提取;针对第二个问题,该文给出了一个融合局部和全局信息的自注意力机制与高速网络相结合的神经网络实体链接框架。在6个实体链接公开数据集上的对比实验表明了该文提出方案的有效性,在最新的通用知识库上该文给出的实体链接模型取得了目前最好的性能。

基于注意力机制的上下文相关的问答配对方法 下载:24 浏览:379

王路 张璐 李寿山 周国栋 《当代中文学刊》 2019年1期

摘要:
目前,关于问答的大部分研究都是面向正式文本的问答对。然而,与以往研究不同的是,该文关注于社会媒体上存在的非正式文本问答对。非正式文本会存在问题文本里包含多个问题以及回答文本里包含多个回答的情况。针对该情况,我们提出了一个新的任务:问答配对,即对问题文本的每个问题,从答案文本中找到和该问题相关的句子。首先,我们从产品问答网站上收集了大规模非正式文本问答对,并在此基础上创建了一个产品问答配对语料库。其次,为了解决非正式文本中存在的噪声问题,提出了一种基于注意力机制的上下文相关的问答配对方法。实验结果表明,该文提出的方法能有效地提升非正式文本的问答配对的性能。

基于细粒度词表示的命名实体识别研究 下载:43 浏览:250

林广和1 张绍武1,2 林鸿飞1 《当代中文学刊》 2018年12期

摘要:
命名实体识别(NER)是自然语言处理中的一项基础任务,其性能的优劣极大地影响着关系抽取、语义角色标注等后续任务。传统的统计模型特征设计难度大、领域适应性差,一些神经网络模型则忽略了词本身所具有的形态学信息。针对上述问题,该文构建了一种基于细粒度词表示的端到端模型(Finger-BiLSTM-CRF)来进行命名实体识别任务。该文首先提出一种基于注意力机制的字符级词表示模型Finger来融合形态学信息和单词的字符信息,然后将Finger与BiLSTM-CRF模型联合进行实体识别,最终该方法以端到端、无任何特征工程的方式在CoNLL 2003数据集上取得了F1为91.09%的结果。实验表明,该文设计的Finger模型显著提升NER系统的召回率,从而使得模型的识别能力显著提升。

ACMF:基于卷积注意力模型的评分预测研究 下载:66 浏览:290

商齐1 曾碧卿1,2 王盛玉1 周才东1 曾锋1 《当代中文学刊》 2018年11期

摘要:
评分数据稀疏是影响评分预测的主要因素之一。为了解决数据稀疏问题,一些推荐模型利用辅助信息改善评分预测的准确率。然而大多数推荐模型缺乏对辅助信息的深入理解,因此还有很大的提升空间。鉴于卷积神经网络在特征提取方面和注意力机制在特征选择方面的突出表现,该文提出一种融合卷积注意力神经网络(Attention Convolutional Neural Network,ACNN)的概率矩阵分解模型:基于卷积注意力的矩阵分解(Attention Convolutional Model based Matrix Factorization,ACMF),该模型首先使用词嵌入将高维、稀疏的词向量压缩成低维、稠密的特征向量;接着,通过局部注意力层和卷积层学习评论文档的特征;然后,利用用户和物品的潜在模型生成评分预测矩阵;最后计算评分矩阵的均方根误差。在ML-100k、ML-1m、ML-10m、Amazon数据集上的实验结果表明,与当前取得最好预测准确率的PHD模型相比,ACMF模型在预测准确率上分别提高了3.57%、1.25%、0.37%和0.16%。

基于离散选择模型的推荐系统改进算法 下载:65 浏览:318

刘乾超 《管理与科学》 2020年2期

摘要:
准确地预估用户的点击率,并根据该概率对商品排序以供用户选择在推荐系统领域有着重要的意义。推荐系统中常用的因子分解机等机器学习模型一般只考虑用户选择单个商品的概率,忽略了候选商品之间的相互影响,离散选择模型则考虑将商品候选集作为整体进行考虑。提出了使用深度学习模型来改进离散选择模型,模型使用相对特征层、注意力机制等网络结构帮助深度学习模型进行不同商品间的特征比较,研究结果表明引入离散选择模型的深度学习模型表现优于梯度提升决策树、因子分解机等模型。

基于注意力机制的LSTM股价趋势预测研究 下载:36 浏览:160

林杰 康慧琳 《管理与科学》 2020年1期

摘要:
针对中国股票市场,提出了一种基于注意力机制的LSTM股价趋势预测模型。选取42只中国上证50从2009年到2017年的股票数据为实验对象,根据股票市场普遍认可的经验规则,分别对每个技术指标进行量化处理得到股票涨跌的趋势数据,并和交易数据混合作为预测模型的输入,然后使用基于注意力机制的LSTM模型提取股价趋势特征进行预测。实验结果表明:引入股票离散型趋势数据到预测模型中,能够在已有交易数据和技术指标的基础上提升预测精确度,与传统的机器学习模型SVM和单一的LSTM模型相比,基于注意力机制的LSTM模型具有更好的预测能力。

融合时空信息的端对端目标跟踪算法 下载:71 浏览:467

陈凯峰 梁鉴如 《数据与科学》 2019年9期

摘要:
视觉目标跟踪是计算机视觉领域的一个基本问题。目前,采用深度卷积方法的相关滤波器(DCF)在目标跟踪领域取得了优秀的成果。然而,大多数现有的跟踪器仅考虑当前帧的外观特征,几乎不考虑目标运动和帧间信息,不能很好地解决诸如遮挡、阴影和变形等问题。因此,我们将利用连续帧中丰富的运动信息来提高跟踪性能。首先,我们将光流信息,特征提取和相关滤波表示为深度学习网络中的相关特殊层,从而能够进行端对端深度学习网络的训练。然后,提出了一种全新的时空注意力机制,通过时空注意力机制的加权,将预定间隔的历史特征图相融合并与当前的特征图进行自适应聚合。最后,在公共数据进行了大量实验,得到了满意的结果。

基于知识图谱与循环注意力网络的视角级情感分析 下载:43 浏览:372

邓立明1,2,3 魏晶晶4 吴运兵1,2,3 余小燕1,2,3 廖祥文1,2,3 《人工智能研究》 2020年12期

摘要:
现有的视角级情感分析方法难以解决单词在不同语境下"一词多义"问题,因此性能受限.针对上述问题,文中提出基于知识图谱与循环注意力网络的视角级情感分析方法.首先,利用动态注意力机制,结合双向长短时记忆网络的文本表示和知识图谱中的同义词信息,获得知识感知状态向量.再联合位置信息构造记忆内容,并输入多层门限循环单元,计算视角词情感特征,进行视角级文本情感分类.在3个公开数据集上的实验表明,文中方法分类效果较优.

基于词性软模板注意力机制的短文本自动摘要方法 下载:47 浏览:341

张亚飞1 左一溪2 余正涛1,2 郭军军1,2 高盛祥1,2 《人工智能研究》 2020年11期

摘要:
任务中,带有直观主谓宾结构的摘要句语义完整性较强,但词性组合对该结构具有约束作用.为此文中提出基于词性软模板注意力机制的短文本自动摘要方法.首先对文本进行词性标记,将标记的词性序列视为文本的词性软模板,指导方法构造摘要句的结构规范,在编码端实现词性软模板的表征.再引入词性软模板注意力机制,增强对文中核心词性(如名词、动词等)的关注.最后在解码端联合词性软模板注意力与传统注意力,产生摘要句.在短文本摘要数据集上的实验验证文中方法的有效性.

基于字词特征自注意力学习的社交媒体文本分类方法 下载:43 浏览:373

王晓莉1 叶东毅2 《人工智能研究》 2020年9期

摘要:
社交媒体文本中突出的长尾效应和过量的词典外词汇(OOV)导致严重的特征稀疏问题,影响分类模型的准确率.针对此问题,文中提出基于字词特征自注意力学习的社交媒体文本分类方法.在字级别构建全局特征,用于学习文本中各词的注意力权值分布.改进现有的多头注意力机制,降低参数规模和计算复杂度.为了更好地分析字词特征融合的作用,提出OOV词汇敏感度,用于衡量不同类型的特征受OOV词汇的影响.多组社交媒体文本分类任务的实验表明,文中方法在融合字特征和词特征方面的有效性与分类准确度均有较明显的提升.此外,OOV词汇敏感度指标的量化结果验证文中方法是可行有效的.

基于并行对抗与多条件融合的生成式高分辨率图像修复 下载:52 浏览:371

邵杭 王永雄 《人工智能研究》 2020年7期

摘要:
现有的图像修复算法经常会有伪影、语义不准等问题出现,对于缺失较大、分辨率较高的图像,修复效果有限.为此,文中提出基于并行对抗与多条件融合的二阶图像修复网络.首先,利用改进的深度残差网络对缺失图像进行生成式像素填充,并利用第一阶对抗网络补全边缘.然后,提取填充图颜色特征,融合补全边缘图,将融合图作为第二阶对抗网络的条件标签.最后,通过带上下文注意力模块的第二阶网络得到修复结果.在多个数据集上的实验表明,文中算法可获得较逼真的修复效果.

基于Wasserstein距离分层注意力模型的跨域情感分类 下载:64 浏览:374

杜永萍 贺萌 赵晓铮 《人工智能研究》 2019年11期

摘要:
跨领域情感分类任务旨在利用已知情感标签的源域数据对缺乏标记数据的目标域进行情感倾向性分析.文中提出基于Wasserstein距离的分层注意力模型,结合Attention机制,采用分层模型进行特征提取,将Wasserstein距离作为域差异度量方式,通过对抗式训练自动捕获领域共享特征.进一步构造辅助任务捕获与共享特征共现的领域独有特征,结合两种特征表示完成跨域情感分类任务.在亚马逊评论等数据集上的实验表明,文中模型仅利用领域共享特征就达到较高的正确率,在不同的跨领域对之间具有较好的稳定性.

结合外部知识的动态多层次语义抽取网络模型 下载:65 浏览:341

姜文超1 庄志刚1 涂旭平2 利传杰3 刘海波1 《人工智能研究》 2019年10期

摘要:
针对复杂多文本机器阅读理解任务中的语义理解与答案提取问题,提出结合外部知识的动态多层次语义理解与答案抽取模型.首先利用改进的门控单元循环神经网络匹配文本内容与问题集,分别在向量化文本内容及问题集上实施多维度动态双向注意力机制分析,提高语义匹配精度.然后利用动态指针网络确定问题答案范围,改进网络模型语义匹配效率,降低答案提取冗余度.最后结合外部知识与经验改进候选答案精准性排序,得到最终答案.实验表明文中模型的语义匹配与答案提取精度显著提升,对不同领域的复杂文本阅读理解任务具有较高的鲁棒性.

面向属性抽取的门控动态注意力机制 下载:72 浏览:443

程梦 洪宇 唐建 张家硕 邹博伟 姚建民 《人工智能研究》 2019年3期

摘要:
在现阶段属性抽取研究中,现有注意力建模及训练较刚性(单句一次成型),而单句中不同词汇的上下文存在语境语义的差异,一致的注意力分布缺少动态的适应性.因此,文中提出面向属性抽取的门控动态注意力机制,利用双向长短时记忆网络捕获目标句中每个单词的隐层表示.在注意力模型处理词一级属性预测时,根据目标词及其上下文,计算适应该目标词的注意力分布向量,可以根据上下文的变化自动调整注意力权重的分配.借助门控调整注意力向量流向下一层神经元的信息量,最终使用条件随机场进行属性标记.应用2014-2016语义评估官方数据集验证文中方法的有效性,F1值均有所提高.

基于时间卷积网络分位数回归的短期负荷概率密度预测方法 下载:83 浏览:426

庞昊1 高金峰1 杜耀恒2 《电网技术研究》 2020年11期

摘要:
为了获得电力系统短期负荷的概率性信息,将分位数回归理论与深度学习算法相结合,提出了一种基于时间卷积网络分位数回归的概率密度预测方法。首先利用距离相关系数衡量不同天气因素与短期负荷的相关性强弱,以此确定输入数据集合;其次通过融合注意力机制的时间卷积网络分位数回归算法预测不同分位数条件下的负荷值;最后利用核密度估计得到待测负荷的概率密度分布。采用中国华东某地的历史负荷数据验证分析,结果表明该方法可以细致刻画待测负荷的概率密度分布,其众数和中位数对预测负荷实际值具有参考意义。

基于卷积记忆网络的视角级微博情感分类 下载:75 浏览:485

廖祥文1 谢媛媛1 魏晶晶3 桂林2 程学旗4 陈国龙2 《人工智能研究》 2018年6期

摘要:
现有记忆网络模型中的上下文词之间相互独立,未考虑词序信息对微博情感的影响.因此文中提出基于卷积记忆网络的视角级微博情感分类方法,利用记忆网络可以有效对查询词与文本之间的语义关系进行建模这一特点,将视角与上下文进行抽象处理.通过卷积操作对上下文进行词序拓展,并利用这一结果捕获文中不同词语在上下文中的注意力信号,用于文本的加权表示.在3个公开数据集上的实验表明,相比已有方法,文中方法的正确率和宏F1值效果更好.

基于BiGRU和注意力机制的多标签文本分类模型 下载:76 浏览:485

饶竹一 张云翔 《计算机研究与应用》 2020年3期

摘要:
文本分类是自然语言处理的重要组成部分,在电网相关的网络文本情感识别中,针对其文本没有固定语法及书写格式,且情感信息分散于文本各个位置的问题,提出一种基于双向门控循环神经网络(BiGRU)和注意力机制的多标签文本分类模型。首先,使用预训练词向量提取网络文本的深层次信息特征;其次,根据注意力机制将分析出的深层次信息特征加以相应的权重;最后,使用BiGRU对文本特征信息进行分类。在Kaggle的Toxic Comment Classification数据集上进行的实验结果表明:对于情感识别的准确率高达98%。

具有双层路由注意力机制的YOLOv8血鹦鹉目标检测与追踪方法 下载:19 浏览:253

李鹏龙1,2 张胜茂2 沈烈1 樊伟2 顾家辉1 邹国华3 《中国水产学报》 2024年3期

摘要:
为了检测观赏鱼类的行为及其健康状况,设计了一种具有双层路由注意力机制的血鹦鹉(Vieja synspila♀×Amphilophus citrinellus♂)目标检测模型YOLOv8n-BiFormer,该方法在YOLOv8n模型基础上添加了双层路由注意力以减少计算量和内存,添加了新的视觉通用变换器BiFormer以提升计算效率,并采用ByteTrack算法追踪血鹦鹉的运动轨迹。结果表明:使用YOLOv8n-BiFormer模型对血鹦鹉的检测准确率达到99.2%,召回率为93.7%,平均精度均值(mAP@0.5)为99.1%,相较于YOLOv8n模型分别提升了0.8%、1.4%、1.0%;使用该模型对水族箱中的慈鲷(Chindongo demasoni)进行检测追踪同样取得了较好的效果,慈鲷的检测准确率达到97.0%,召回率为93.4%,平均精度均值为96.5%,相较于YOLOv8n模型召回率和平均精度分别提升了1.8%和1.9%。研究表明,本文中设计的YOLOv8n-BiFormer模型具有通用性,在检测和追踪血鹦鹉和慈鲷目标方面均表现优异,消耗的计算资源较少,可部署在水族箱监控系统中,为观赏鱼信息记录自动化和智能化提供了可行的解决方案。
在线客服::点击联系客服
联系电话::400-188-5008
客服邮箱::service@ccnpub.com
投诉举报::feedback@ccnpub.com
人工客服

工作时间(9:00-18:00)
官方公众号

科技成果·全球共享