请选择 目标期刊

结合注意力机制与双向LSTM的中文事件检测方法 下载:28 浏览:244

沈兰奔 武志昊 纪宇泽 林友芳 万怀宇 《中文研究》 2019年2期

摘要:
事件检测是信息抽取领域的重要任务之一。已有的方法大多高度依赖复杂的语言特征工程和自然语言处理工具,中文事件检测还存在由分词带来的触发词分割问题。该文将中文事件检测视为一个序列标注而非分类问题,提出了一种结合注意力机制与长短期记忆神经网络的中文事件检测模型ATT-BiLSTM,利用注意力机制来更好地捕获全局特征,并通过两个双向LSTM层更有效地捕获句子序列特征,从而提高中文事件检测的效果。在ACE 2005中文数据集上的实验表明,该文提出的方法与其他现有的中文事件检测方法相比性能得到明显提升。

基于混合表示的中文事件检测方法研究 下载:59 浏览:340

秦彦霞1 王中卿2 郑德权1 张民2 《当代中文学刊》 2019年11期

摘要:
传统中文事件检测方法采用人工定义的特征表示候选触发词,耗时耗力。基于神经网络的特征学习方法在中英文事件检测任务中得到了验证。现有的基于神经网络的中文事件检测方法初步探索了字信息对解决分词错误的作用。字是中文的最小结构单元和语义表示单元。词语的字符级信息能够提供词语的结构性信息和辅助词语级语义。该文研究了字/词混合神经网络特征对于解决中文事件数据集未登录词问题的作用。采用神经网络模型分别学习词语的词语级表示和字符级表示,进而拼接得到词语的混合表示。实验结果表明,基于字/词混合表示的中文神经网络事件检测模型的F1值比当前最好的模型高2.5%。
[1/1]
在线客服::点击联系客服
联系电话::400-188-5008
客服邮箱::service@ccnpub.com
投诉举报::feedback@ccnpub.com
人工客服

工作时间(9:00-18:00)
官方公众号

科技成果·全球共享