请选择 目标期刊

国产高分辨率遥感数据城市绿地提取研究 下载:83 浏览:497

刘培1,2 李莹2,3 马威4 张晓颖1,2 《测绘科学与技术》 2020年3期

摘要:
针对国产高分辨率遥感数据在城市绿地信息提取中分割尺度选择问题,选取国产高分一号(GF-1)和中巴地球资源卫星04星(CBERS-04)遥感数据,在数据融合的基础上,采用控制变量法选取影像分割与合并尺度进行绿地信息提取,通过信息提取精度评价确定最优分割尺度。实验结果表明,对于GF-1和CBERS-04国产遥感数据,面向对象的方法均优于基于像元的方法,其中5m分辨率CBERS-04数据,面向对象方法绿地提取精度为90.53%,基于像元方法绿地提取精度为86.54%,推荐分割尺度与合并尺度为(25,70);2m分辨率GF-1数据,面向对象方法绿地提取精度为97.09%,基于像元方法绿地提取精度为83.49%,推荐分割尺度与合并尺度为(45,80)。研究结果能够为国产高分遥感数据城区绿地信息提取和地物分类过程中尺度选择提供借鉴和支持。

一种联合空间变换和置换注意力机制的近岸水产养殖区信息提取方法 下载:24 浏览:246

巫统仁1,2,3 张显3 刘培1,2,4 文婷婷1,2,3 邹振学1,2,3 《中国水产学报》 2024年3期

摘要:
为解决水产养殖区遥感提取过程中近岸坑塘养殖目标和网箱养殖目标地物背景复杂,受房屋、植被、海水和船只等干扰提取精度较低等问题,提出了一种联合空间变换和置换注意力机制的近岸水产养殖区信息提取方法SA-STN-Net,选取海南省文昌市八门湾和万宁市坡头港为研究区域,先利用光谱特征和纹理特征构建水产养殖目标先验知识,然后在U-Net模型基础上联合空间变换网络(spatial transformer network, STN)和置换注意力机制(shuffle attention, SA),用于增强养殖目标空间特征、减少复杂地物的干扰并聚焦近岸水产养殖区域。结果表明:与原始U-Net模型相比,SA-STN-Net模型的总体提取精度和平均交并比提高了3.3%和5.7%;与当前较为先进的A2fpn、Swin-Transformer和Dc-Swin等深度学习分割算法相比,SA-STN-Net模型具有更好的分割性能,F1分数分别提高了6.7%、4.2%和7.2%。研究表明,本文提出的SA-STN-Net模型能适应近岸水产养殖目标地物背景复杂的情况,可对近岸养殖目标进行有效提取,本研究结果可为近岸规划与管理部门提供技术支持。
[1/1]
在线客服::点击联系客服
联系电话::400-188-5008
客服邮箱::service@ccnpub.com
投诉举报::feedback@ccnpub.com
人工客服

工作时间(9:00-18:00)
官方公众号

科技成果·全球共享