请选择 目标期刊

基于BERT的任务导向对话系统自然语言理解的改进模型与调优方法 下载:30 浏览:325

周奇安 李舟军 《当代中文学刊》 2020年7期

摘要:
任务导向对话系统的自然语言理解,其目的就是解析用户以自然语言形式输入的语句,并提取出可以被计算机所理解的结构化信息,其包含意图识别和槽填充两个子任务。BERT是近期提出来的一种自然语言处理预训练模型,已有研究者提出基于BERT的任务导向对话系统自然语言理解模型。在此基础上,该文提出一种改进的自然语言理解模型,其编码器使用BERT,而解码器基于LSTM与注意力机制构建。同时,该文提出了该模型的两种调优方法:锁定模型参数的训练方法、使用区分大小写的预训练模型版本。在基线模型与改进模型上,这些调优方法均能够显著改进模型的性能。实验结果显示,利用改进后的模型与调优方法,可以分别在ATIS和Snips两个数据集上得到0.883 3和0.925 1的句子级准确率。
[1/1]
在线客服::点击联系客服
联系电话::400-188-5008
客服邮箱::service@ccnpub.com
投诉举报::feedback@ccnpub.com
人工客服

工作时间(9:00-18:00)
官方公众号

科技成果·全球共享