检 索
学术期刊
切换导航
首页
文章
期刊
投稿
首发
学术会议
图书中心
新闻
新闻动态
科学前沿
合作
我们
一封信
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
我要投稿
查看投稿进度
学术期刊
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
在线客服
客服电话:
400-188-5008
客服邮箱:
service@ccnpub.com
投诉举报:
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享
请选择
目标期刊
首页
期刊
文章
基于BERT的任务导向对话系统自然语言理解的改进模型与调优方法
下载:
30
浏览:
325
周奇安
李舟军
《当代中文学刊》
2020年7期
摘要:
任务导向对话系统的自然语言理解,其目的就是解析用户以自然语言形式输入的语句,并提取出可以被计算机所理解的结构化信息,其包含意图识别和槽填充两个子任务。BERT是近期提出来的一种自然语言处理预训练模型,已有研究者提出基于BERT的任务导向对话系统自然语言理解模型。在此基础上,该文提出一种改进的自然语言理解模型,其编码器使用BERT,而解码器基于LSTM与注意力机制构建。同时,该文提出了该模型的两种调优方法:锁定模型参数的训练方法、使用区分大小写的预训练模型版本。在基线模型与改进模型上,这些调优方法均能够显著改进模型的性能。实验结果显示,利用改进后的模型与调优方法,可以分别在ATIS和Snips两个数据集上得到0.883 3和0.925 1的句子级准确率。
[1/1]
|<
<
1
>
>|
在线客服::
点击联系客服
联系电话::
400-188-5008
客服邮箱::
service@ccnpub.com
投诉举报::
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享