检 索
学术期刊
切换导航
首页
文章
期刊
投稿
首发
学术会议
图书中心
新闻
新闻动态
科学前沿
合作
我们
一封信
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
我要投稿
查看投稿进度
学术期刊
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
在线客服
客服电话:
400-188-5008
客服邮箱:
service@ccnpub.com
投诉举报:
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享
请选择
目标期刊
首页
期刊
文章
改进的基于区域卷积神经网络的微操作系统目标检测方法
下载:
87
浏览:
497
彭刚
杨诗琪
黄心汉
苏豪
《人工智能研究》
2018年3期
摘要:
传统的目标检测方法不能有效检测微操作系统中部分受遮挡或多种姿态的目标,因此文中采用改进的基于区域卷积神经网络的Faster-RCNN检测算法,用于微操作系统中部分受遮挡或多种姿态的目标检测.在原始Faster-RCNN的基础上,使用在图像分类任务中性能优越的深度残差网络作为检测算法的主框架,并且引入防止正负样本不均衡的在线困难样本挖掘策略以提高网络性能.实验表明,这种改进的基于区域卷积神经网络方法能有效识别部分受遮挡和不同姿态的目标,相比传统方法,文中方法对环境适应性更强,速度更快,具有实际应用价值.
[1/1]
|<
<
1
>
>|
在线客服::
点击联系客服
联系电话::
400-188-5008
客服邮箱::
service@ccnpub.com
投诉举报::
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享