请选择 目标期刊

β-半乳糖苷酶的固定化及其在乳清行业中的应用 下载:43 浏览:384

李冠龙 刘晓兰 波利特 《中国食品与营养》 2019年10期

摘要:
利用海藻酸钠和壳聚糖2种固定化载体对2种β-半乳糖苷酶(Lactozym酶和源于米曲霉的β-半乳糖苷酶)进行固定化,研究了温度和pH对酶活力的影响、游离酶和固定化酶水解乳清中乳糖以及固定化酶的重复利用性。结果表明:与游离酶相比较,固定化酶在最适反应温度、最适反应pH,乳糖水解和重复利用性方面均有不同程度的变化,表现出良好的稳定性。相比之下,壳聚糖固定化酶比海藻酸钠固定化酶的效果好,其中壳聚糖固定化源于米曲霉的β-半乳糖苷酶效果更为突出,该酶的最适反应温度50℃,最适反应pH为3.0,在相同加酶量的条件下水解乳清2 h后,乳糖水解率为72.99%,重复利用6次后,乳糖水解率仍能达到68.58%,重复利用性高,减少成本。研究为利用固定化酶工业化水解乳清中乳糖奠定了一定基础。

固定化多酶级联反应器 下载:29 浏览:310

郭华1 张蕾1 董旭1 申刚义1 尹俊发2 《应用化学学报》 2020年5期

摘要:
多酶级联反应在生命活动过程中发挥着重要作用。固定化多酶级联反应器是将不同功能的酶通过物理化学或生物手段固定于特定载体上,以之模拟生物体内多种酶协同作用方式促使底物发生降解和转化等反应的新型仿生催化技术。该技术具有固定化酶的稳定性、可重复利用以及酶级联的高效协同催化等优点,近年来在生物传感、模拟生物学以及生物转化等领域得到越来越多的关注。本文从多酶级联反应原理、反应器制备、级联反应的影响因素及应用等方面对近年来固定化多酶级联反应器的进展进行详细评述,并展望其发展前景。

有机电极材料固定化策略 下载:33 浏览:308

章胜男 韩东梅 任山 肖敏 王拴紧 孟跃中 《应用化学学报》 2020年1期

摘要:
有机电极材料因其理论比容量高、低成本、环境友好以及分子结构可设计性强等特点,有望成为下一代可持续和多功能能量储存设备的有效电极材料。然而,根据"相似相溶"原理,该类材料极易溶解在有机电解液中,导致电池容量衰减快、循环稳定性和倍率性能也较差。目前已有许多研究致力于通过"固定化"过程解决有机电极材料的溶解问题。本综述针对有机电极材料的固定化策略展开评述,介绍了有机电极材料的固定化机理,以及各种固定化策略在不同种类有机电极材料中所起的作用,指出了有机电极材料面临的挑战,并对未来的研究和改进方向进行展望。

基于金属有机骨架的固定化氯过氧化物酶的制备和性能评价 下载:65 浏览:398

赵睿南1 胡满成1,2 李淑妮1,2 翟全国1,2 蒋育澄1,2 《应用化学学报》 2019年11期

摘要:
30℃水相体系中"一锅法"快速制备固定化氯过氧化物酶(CPO@ZIF-8),在构筑金属有机沸石咪唑骨架结构(ZIF-8)的同时将氯过氧化物酶(CPO)固定在其三维纳米孔道中.温和的条件为固定化酶制备过程中酶活性的保持提供了前提.结构和性能表征说明酶分子的引入并不改变ZIF-8材料的孔道结构,同时酶分子在CPO@ZIF-8中呈现出在整体骨架材料中的嵌入式均匀分布.与先构筑ZIF-8骨架材料,然后通过表面吸附来固定酶分子的方法相比,通过将酶分子引入整体骨架材料中不仅提高了酶的固载量,更主要的是利用ZIF-8材料的高比表面积提高了固定化CPO的催化效率,同时基于三维孔道提供的刚性屏蔽环境有效改善了CPO在极端反应条件下的热稳定性、酸碱稳定性和对有机溶剂的耐受性.

球孢白僵菌固定化生物转化合成D-HPPA 下载:82 浏览:488

王灿 郝会会 潘海亮 赵筱王金华 《生物技术研究》 2020年1期

摘要:
利用球孢白僵菌进行固定化生物转化,将底物R-(+)-2-苯氧基丙酸(D-PPA)转化合成产物R-(+)-2-(4-羟基苯氧基)丙酸(D-HPPA)。[方法]利用海藻酸钠和聚乙烯醇对球孢白僵菌进行包埋处理,并对包埋条件进行累积优化。[结果]4%海藻酸钠和4. 5%聚乙烯醇混合后,再加入2. 5%的氯化钙作为交联剂交联8 h。在此包埋条件下制备的白僵菌凝胶珠,置于30 g/L的D-PPA进行固定化生物转化。反应5 d后,产物浓度最终为29. 9 g/L,平均生产强度为5. 98 g/(L·d),底物转化率为99. 7%。[结论]海藻酸钠和聚乙烯醇可用于白僵菌的固定化,且较游离菌体的生物转化的反应周期缩短28. 6%,平均生产强度增加64. 7%,底物转化率提高17. 7%。

生物制药技术在制药工艺中的应用 下载:113 浏览:1502

修长迪1 范晶晶2 孙颖2 《生物学报》 2022年8期

摘要:
生物科技的发展为制药工艺应用提供了更多可能性,其通过研究微生物学、生物组织、细胞等进行药物的制作,将天然生物材料作为制药原料。生物制药技术逐渐成为药物领域的核心技术之一。本文主要对常见的生物制药技术进行概述,并对其在制药工艺中的具体应用进行分析,旨在推动生物制药技术的进步与发展。
[1/1]
在线客服::点击联系客服
联系电话::400-188-5008
客服邮箱::service@ccnpub.com
投诉举报::feedback@ccnpub.com
人工客服

工作时间(9:00-18:00)
官方公众号

科技成果·全球共享