请选择 目标期刊

基于多任务学习的古诗和对联自动生成 下载:32 浏览:456

卫万成1 黄文明1,2王晶1 邓珍荣1,2 《中文研究》 2019年7期

摘要:
实现古诗和对联的自动生成是极具挑战性的任务。该文提出了一种新颖的多任务学习模型用于古诗和对联的自动生成。模型采用编码-解码结构并融入注意力机制,编码部分由两个BiLSTM组成,一个BiLSTM用于关键词输入,另一个BiLSTM用于古诗和对联输入;解码部分由两个LSTM组成,一个LSTM用于古诗的解码输出,另一个LSTM用于对联的解码输出。在中国的传统文学中,古诗和对联具有很多的相似特征,多任务学习模型通过编码器参数共享,解码器参数不共享,让模型底层编码部分兼容古诗和对联特征,解码部分保留各自特征,增强模型泛化能力,表现效果大大优于单任务模型。同时,该文在模型中创新性地引入关键词信息,让生成的古诗及对联表达内容与用户意图一致。最后,该文采用自动评估和人工评估两种方式验证了方法的有效性。

基于序列图模型的多标签序列标注 下载:28 浏览:323

王少敬 刘鹏飞 邱锡鹏 《当代中文学刊》 2020年11期

摘要:
该文针对实际中存在对同一句话标注多种序列标签问题,定义了多标签序列标注任务,并提出了一种新的序列图模型。序列图模型主要为了建模两种依赖关系:不同单词在时序维度上面的关系和同一单词在不同任务之间的依赖关系。该文采用LSTM或根据Transformer修改设计的模型处理时序维度上的信息传递。同一单词在不同任务之间使用注意力机制处理不同任务之间的依赖关系,以获得每个单词更好的隐状态表示,并作为下次递归处理的输入。实验表明,该模型不仅能够在Ontonotes 5.0数据集上取得更好的结果,而且可以获取不同任务标签之间可解释的依赖关系。

基于多任务学习的汉语基本篇章单元和主述位联合识别 下载:51 浏览:367

葛海柱 孔芳 《当代中文学刊》 2020年1期

摘要:
基本篇章单元(elementary discourse units,EDU)识别是构建篇章结构的基础,对篇章分析意义重大。从篇章衔接性视角来看,篇章话题结构理论认为,每个EDU都由要表达信息的起始点(主位)和传达的新信息(述位)两部分构成。因此,EDU识别与主述位识别任务的关系密切。基于此,该文给出了一个基于多任务学习的汉语基本篇章单元和主述位联合识别方法。该方法利用双向长短时记忆网络和图卷积网络对基本单元进行序列化和结构化拓扑信息的表征,再利用多任务学习框架让两个任务共享参数,借助不同任务间的相关性来提升模型的性能。实验结果表明,基于多任务学习的EDU和主述位识别性能均优于单任务学习模型中各自的性能,其中基本篇章单元识别的F1值达到91.90%,主述位识别的F1值达到85.65%。

基于标签增强的机器阅读理解模型 下载:61 浏览:360

苏立新1,2 郭嘉丰2 范意兴1 兰艳艳2 程学旗3 《人工智能研究》 2020年5期

摘要:
抽取式问答中已有模型仅建模答案的边界,忽视人的潜在标注过程,导致模型仅学习到表面特征,影响泛化能力.因此,文中提出基于标签增强的机器阅读理解模型(LE-Reader),模拟人的标注过程.LE-Reader模型同时建模答案所在句子、答案内容和答案边界.根据用户标注的答案边界推断正确答案的句子和答案内容作为标签,监督模型的学习过程.通过多任务学习的方式融合3个损失函数.预测时融合3种建模结果,确定最终答案,提高模型的泛化性能.在SQuAD数据集上的实验验证LE-Reader的有效性.

机器仿生眼的多任务学习人脸分析 下载:73 浏览:396

樊迪1 Hyunwoo Kim1 陈晓鹏1 刘云辉2 黄强1 《人工智能研究》 2019年3期

摘要:
智能机器人中人机交互的性能至关重要,人脸分析可以使人机交互变得更友善.文中提出可以同时进行笑容识别和性别分类的多任务学习卷积神经网络,同时学习存在内在相关性的任务,提升单个任务的性能.在Celeb A数据集的测试集上,文中网络在笑容识别任务和性别分类任务中均获取较高准确率.在设计的机器仿生眼上验证文中模型,获得良好的笑容识别效果和性别分类效果.文中对人脸分析进行的研究可以提升与机器仿生眼人机交互的能力.

基于低秩表示的多任务短期电力负荷预测的研究 下载:81 浏览:470

苏运1 卜凡鹏2 郭乃网1 田世明2 田英杰1 张琪祁1 瞿海妮1 柳劲松1 《电力研究》 2019年6期

摘要:
在电力系统负荷预测中,使用传统的单任务学习方法未考虑多个地点的负荷间的潜在关系,忽视关联信息在多个地点间传递的可能会导致学习效果欠佳。针对这一问题,本文提出基于低秩表示的多任务学习方法进行多个地点的多任务负荷预测,该方法在学习过程中可以提取不同位置的负荷预测模型的共享低维表示,从而可以挖掘多个任务之间的关联关系,同时又可以区别不同任务之间的差别。实验表明,多任务负荷预测的平均性能优于决策树和随机森林等单任务学习方法,在负荷预测的精度上有了一定的提升。
[1/1]
在线客服::点击联系客服
联系电话::400-188-5008
客服邮箱::service@ccnpub.com
投诉举报::feedback@ccnpub.com
人工客服

工作时间(9:00-18:00)
官方公众号

科技成果·全球共享