请选择 目标期刊

具有双层路由注意力机制的YOLOv8血鹦鹉目标检测与追踪方法 下载:19 浏览:248

李鹏龙1,2 张胜茂2 沈烈1 樊伟2 顾家辉1 邹国华3 《中国水产学报》 2024年3期

摘要:
为了检测观赏鱼类的行为及其健康状况,设计了一种具有双层路由注意力机制的血鹦鹉(Vieja synspila♀×Amphilophus citrinellus♂)目标检测模型YOLOv8n-BiFormer,该方法在YOLOv8n模型基础上添加了双层路由注意力以减少计算量和内存,添加了新的视觉通用变换器BiFormer以提升计算效率,并采用ByteTrack算法追踪血鹦鹉的运动轨迹。结果表明:使用YOLOv8n-BiFormer模型对血鹦鹉的检测准确率达到99.2%,召回率为93.7%,平均精度均值(mAP@0.5)为99.1%,相较于YOLOv8n模型分别提升了0.8%、1.4%、1.0%;使用该模型对水族箱中的慈鲷(Chindongo demasoni)进行检测追踪同样取得了较好的效果,慈鲷的检测准确率达到97.0%,召回率为93.4%,平均精度均值为96.5%,相较于YOLOv8n模型召回率和平均精度分别提升了1.8%和1.9%。研究表明,本文中设计的YOLOv8n-BiFormer模型具有通用性,在检测和追踪血鹦鹉和慈鲷目标方面均表现优异,消耗的计算资源较少,可部署在水族箱监控系统中,为观赏鱼信息记录自动化和智能化提供了可行的解决方案。

具有双层路由注意力机制的YOLOv8血鹦鹉目标检测与追踪方法 下载:19 浏览:248

李鹏龙1,2 张胜茂2 沈烈1 樊伟2 顾家辉1 邹国华3 《中国水产学报》 2024年3期

摘要:
为了检测观赏鱼类的行为及其健康状况,设计了一种具有双层路由注意力机制的血鹦鹉(Vieja synspila♀×Amphilophus citrinellus♂)目标检测模型YOLOv8n-BiFormer,该方法在YOLOv8n模型基础上添加了双层路由注意力以减少计算量和内存,添加了新的视觉通用变换器BiFormer以提升计算效率,并采用ByteTrack算法追踪血鹦鹉的运动轨迹。结果表明:使用YOLOv8n-BiFormer模型对血鹦鹉的检测准确率达到99.2%,召回率为93.7%,平均精度均值(mAP@0.5)为99.1%,相较于YOLOv8n模型分别提升了0.8%、1.4%、1.0%;使用该模型对水族箱中的慈鲷(Chindongo demasoni)进行检测追踪同样取得了较好的效果,慈鲷的检测准确率达到97.0%,召回率为93.4%,平均精度均值为96.5%,相较于YOLOv8n模型召回率和平均精度分别提升了1.8%和1.9%。研究表明,本文中设计的YOLOv8n-BiFormer模型具有通用性,在检测和追踪血鹦鹉和慈鲷目标方面均表现优异,消耗的计算资源较少,可部署在水族箱监控系统中,为观赏鱼信息记录自动化和智能化提供了可行的解决方案。

基于深度学习YOLOV5网络模型的金枪鱼延绳钓电子监控系统目标检测应用 下载:34 浏览:360

王书献1,2 张胜茂2 朱文斌3 孙永文1,2 杨昱皞1,2 隋江华1 沈烈1 沈介然4 《中国水产学报》 2021年6期

摘要:
为评估金枪鱼延绳钓系统运行质量、降低人工成本,以及从金枪鱼延绳钓系统电子监控EMS系统中提取浮球、金枪鱼数量等信息,本文提出一种基于深度学习YOLOV5网络模型的金枪鱼延绳钓电子监控系统浮球及金枪鱼目标检测方法,从HNY722远洋渔船EMS系统视频监控数据中截取包含有目标浮球和金枪鱼的15 578帧关键帧,将所有关键帧及其标记文件划分为14 178个训练数据及1 400个验证数据,基于YOLOV5s、YOLOV5l、YOLOV5m、YOLOV5x等4种YOLOV5神经网络模型,设计分组训练试验对比训练效果。结果表明:参与训练的4种神经网络模型均可完成金枪鱼延绳钓电子监控系统的目标检测任务,但网络模型的选择对广义交并比损失(GIoU loss)、目标检测损失(objectness loss)、准确率(precision)、召回率(recall)、多类别平均精度值(mAP)等参数具有显著性影响(P<0.05),对目标分类损失(classification loss)参数无显著性影响(P>0.05);检测效果表现较好的模型是YOLOV5l和YOLOV5m,二者的mAP@0.5值分别为99.1%和99.2%,召回率分别为98.4%和98.3%,但YOLOV5m网络模型在GIoU损失等表现上劣于YOLOV5l。研究表明,4种网络模型中YOLOV5l模型是最适合应用于金枪鱼延绳钓电子监控系统目标检测的网络模型。

中国近海捕捞机动渔船航次特征数据挖掘 下载:50 浏览:325

高明远1,2 张胜茂2 汤先峰2 樊伟2 范秀梅2 伍玉梅2 朱文斌3 《中国水产学报》 2021年1期

摘要:
为加强渔船进出港管理和捕捞渔获物监管,解决信息上报中主观性大,报告信息错误、虚假报告等问题,利用北斗船位数据记录渔船出海作业的时间、位置、航速、航向等信息,通过航次特征数据挖掘,分析了港口格网、岸线点与北斗船位终端记录轨迹的空间关系,提取到2.5万余艘渔船的39.98万个航次数据,并利用船位点球面距离累加计算航程,利用船位点到岸线点距离计算平均离岸距离,分析了中国近海渔船的航次特征。结果表明:渔船出港时间集中在每日8:00—17:59,进港时间集中在每日5:00—10:59和13:00—18:59;航次特征数据受大小潮、朔望日等影响较大,可划分为1~10d、11~15d、16~21d和22~30d等航次时长段;渔船的航次时长、航程和平均离岸距离均由江苏省向北、向南降低。研究表明,利用北斗船位数据提取航次具有速度快、实时性强的特点,是渔船管理的重要信息源之一,可为渔船进出港管理提供参考。
[1/1]
在线客服::点击联系客服
联系电话::400-188-5008
客服邮箱::service@ccnpub.com
投诉举报::feedback@ccnpub.com
人工客服

工作时间(9:00-18:00)
官方公众号

科技成果·全球共享