请选择 目标期刊

基于多通道双向长短期记忆网络的情感分析 下载:16 浏览:319

李卫疆 漆芳 《中文研究》 2019年10期

摘要:
当前存在着大量的语言知识和情感资源,但在基于深度学习的情感分析研究中,这些特有的情感信息,没有在情感分析任务中得到充分利用。针对以上问题,该文提出了一种基于多通道双向长短期记忆网络的情感分析模型(multi-channels bidirectional long short term memory network,Multi-Bi-LSTM),该模型对情感分析任务中现有的语言知识和情感资源进行建模,生成不同的特征通道,让模型充分学习句子中的情感信息。与CNN相比,该模型使用的Bi-LSTM考虑了词序列之间依赖关系,能够捕捉句子的上下文语义信息,使模型获得更多的情感信息。最后在中文COAE2014数据集、英文MR数据集和SST数据集进行实验,取得了比普通Bi-LSTM、结合情感序列特征的卷积神经网络以及传统分类器更好的性能。

基于多特征自注意力BLSTM的中文实体关系抽取 下载:33 浏览:345

李卫疆 李涛 漆芳 《中文研究》 2019年6期

摘要:
实体关系抽取解决了原始文本中目标实体之间的关系分类问题,同时也被广泛应用于文本摘要、自动问答系统、知识图谱、搜索引擎和机器翻译中。由于中文句式和语法结构复杂,并且汉语有更多歧义,会影响中文实体关系分类的效果。该文提出了基于多特征自注意力的实体关系抽取方法,充分考虑词汇、句法、语义和位置特征,使用基于自注意力的双向长短期记忆网络来进行关系预测。在中文COAE 2016Task 3和英文SemEval 2010Task 8数据集上的实验表明该方法表现出了较好的性能。
[1/1]
在线客服::点击联系客服
联系电话::400-188-5008
客服邮箱::service@ccnpub.com
投诉举报::feedback@ccnpub.com
人工客服

工作时间(9:00-18:00)
官方公众号

科技成果·全球共享