检 索
学术期刊
切换导航
首页
文章
期刊
投稿
首发
学术会议
图书中心
新闻
新闻动态
科学前沿
合作
我们
一封信
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
我要投稿
查看投稿进度
学术期刊
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
在线客服
客服电话:
400-188-5008
客服邮箱:
service@ccnpub.com
投诉举报:
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享
请选择
目标期刊
首页
期刊
文章
基于深度强化学习的智能频谱分配策略研究
下载:
63
浏览:
251
杨洁祎
金光
朱家骅
《数据与科学》
2020年6期
摘要:
随着无线网络被广泛使用,频谱资源变得越来越稀缺,高效的频谱分配策略对无线通信至关重要。动态频谱接入是一个动态时变优化问题,基于固定编码的算法无法自适应复杂的网络环境。本文将深度强化学习算法引入到认知无线电系统中,使智能体在未知频谱环境下不断与环境进行交互,学习到最佳频谱选择策略,提高频谱资源利用效率。实验结果表明:该算法在复杂的网络环境下能有效学习到最佳策略,且当网络环境发生变化时,算法能自动调整,实现二次收敛。
[1/1]
|<
<
1
>
>|
在线客服::
点击联系客服
联系电话::
400-188-5008
客服邮箱::
service@ccnpub.com
投诉举报::
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享