检 索
学术期刊
切换导航
首页
文章
期刊
投稿
首发
学术会议
图书中心
新闻
新闻动态
科学前沿
合作
我们
一封信
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
我要投稿
查看投稿进度
学术期刊
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
在线客服
客服电话:
400-188-5008
客服邮箱:
service@ccnpub.com
投诉举报:
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享
请选择
目标期刊
首页
期刊
文章
引入分数阶微分的局部高斯分布拟合能量模型
下载:
64
浏览:
384
储珺1
余佳佳2
缪君1
张桂梅1
《人工智能研究》
2019年11期
摘要:
局部高斯分布拟合能量(LGDF)模型缺乏全局信息,对初始轮廓曲线选取较敏感,特别在分割弱边缘和弱纹理区域图像时,容易陷入局部极值,对噪声的鲁棒性不好.针对上述问题,文中提出引入分数阶微分的LGDF模型.在LGDF模型中引入全局的Grümwald-Letnikov(G-L)分数阶梯度拟合项,增强弱边缘和弱纹理区域的梯度信息,提高对初始轮廓曲线和噪声的鲁棒性.采用自适应权重函数确定全局项和局部项的系数,提高对灰度不均匀图像的分割效率和分割精度.根据图像的梯度模值、信息熵和对比度构建自适应分数阶阶次的函数,提高分割效率.理论分析和实验均表明,文中模型可以用于灰度不均匀、弱纹理、弱边缘图像的分割.合成图像和真实图像的实验表明文中模型可以提高图像的分割精度和效率.
[1/1]
|<
<
1
>
>|
在线客服::
点击联系客服
联系电话::
400-188-5008
客服邮箱::
service@ccnpub.com
投诉举报::
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享