请选择 目标期刊

局部可视对抗扰动生成方法 下载:61 浏览:379

周星宇1,2 潘志松2 胡谷雨2 段晔鑫2,3 《人工智能研究》 2020年2期

摘要:
深度神经网络极易受到局部可视对抗扰动的攻击.文中以生成对抗网络为基础,提出局部可视对抗扰动生成方法.首先,指定被攻击的分类网络作为判别器,并在训练过程中固定参数不变.再构建生成器模型,通过优化欺骗损失、多样性损失和距离损失,使生成器产生局部可视对抗扰动,并叠加在不同输入样本的任意位置上攻击分类网络.最后,提出类别比较法,分析局部可视对抗扰动的有效性.在公开的图像分类数据集上实验表明,文中方法攻击效果较好.

基于图像云模型语义标注的条件生成对抗网络 下载:72 浏览:489

杜秋平 刘群 《人工智能研究》 2018年6期

摘要:
在图像补全技术中,当图像丢失较多信息时,仅凭自身已有的信息很难补全图像.因此,文中使用条件生成对抗网络(CGAN)和多粒度认知相结合的方式研究图像的降噪和补全.首先借助云模型中高斯云变换算法提取无标签图像的多层语义信息,并根据不同层次的语义信息对图像进行不同粒度的分割,同时对已分割图像进行自动语义标注.然后将各粒层图像和其对应的语义信息分别作为CGAN的训练数据,得到图像生成对抗网络模型.最后依据此模型补全图像的缺失信息.实验表明,对于Caltech-UCSD Birds和Oxford-102flowers数据集的图像降噪和图像补全,文中算法取得较好效果.
[1/1]
在线客服::点击联系客服
联系电话::400-188-5008
客服邮箱::service@ccnpub.com
投诉举报::feedback@ccnpub.com
人工客服

工作时间(9:00-18:00)
官方公众号

科技成果·全球共享