请选择 目标期刊

基于机器学习的细粒度空气质量时间预测器 下载:63 浏览:493

曹鑫磊 冯锋 《中国环境保护》 2020年6期

摘要:
针对空气质量状况的预防和治理,提出了基于线性回归的空气质量预测方法。作为时间预测器,更多的是考虑本地的历史数据、过去与未来的状况,挖掘空气质量随时间变化的关系以及变化趋势,为了选取最优的特征,对数据进行分析,找到与空气质量变化关系密切且存在线性关系的特征,以此特征来建立线性回归模型,并使用Cross-Validation方法进行评估验证。实验结果表明线性回归方法能够有效地预测到空气质量的变化趋势,效果良好,具有较强的实用性。
[1/1]
在线客服::点击联系客服
联系电话::400-188-5008
客服邮箱::service@ccnpub.com
投诉举报::feedback@ccnpub.com
人工客服

工作时间(9:00-18:00)
官方公众号

科技成果·全球共享