检 索
学术期刊
切换导航
首页
文章
期刊
投稿
首发
学术会议
图书中心
新闻
新闻动态
科学前沿
合作
我们
一封信
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
我要投稿
查看投稿进度
学术期刊
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
在线客服
客服电话:
400-188-5008
客服邮箱:
service@ccnpub.com
投诉举报:
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享
请选择
目标期刊
首页
期刊
文章
基于FCM和CG-DBN的光伏功率短期预测
下载:
75
浏览:
501
李正明
高赵亮
梁彩霞
《电力研究》
2019年11期
摘要:
针对光伏输出功率非线性、波动大、不稳定等特征引起光伏功率短期预测不精确的问题,本文提出了一种基于相似日聚类和利用共轭梯度法(CG)改进深度信念网络(DBN)的组合模型预测方法。首先利用FCM聚类算法将原始数据按照隶属度进行相似日聚类,随后根据类别进行CGDBN预测模型的建模,最后利用该模型进行光伏输出功率的短期预测。本文将方案应用于浙江龙游发电站,并将预测结果与传统预测模型进行了比较。最终得出,FCM和CG-DBN组合预测模型在光伏功率短期预测中的性能优于其他模型。
[1/1]
|<
<
1
>
>|
在线客服::
点击联系客服
联系电话::
400-188-5008
客服邮箱::
service@ccnpub.com
投诉举报::
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享