检 索
学术期刊
切换导航
首页
文章
期刊
投稿
首发
学术会议
图书中心
新闻
新闻动态
科学前沿
合作
我们
一封信
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
我要投稿
查看投稿进度
学术期刊
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
在线客服
客服电话:
400-188-5008
客服邮箱:
service@ccnpub.com
投诉举报:
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享
请选择
目标期刊
首页
期刊
文章
网络表示学习算法的分析与验证
下载:
40
浏览:
424
王岩
唐杰
《当代中文学刊》
2019年4期
摘要:
网络表示学习算法是社交网络分析领域的一个热点问题。该文旨在研究现有的各种网络表示学习算法,并分析各类算法在不同结构的网络数据中的性能,对3大类别、共10种网络表示学习算法在8个网络上进行了网络节点的多标签分类以验证算法的性能,以此来全面评价各类算法的效果、效率和应用范围。实验结果表明,DeepWalk这种流行的深度学习算法在各种类型的网络中有着稳定而较好的效果。而基于矩阵分解算法的应用,则受限于其较高的空间复杂度。
[1/1]
|<
<
1
>
>|
在线客服::
点击联系客服
联系电话::
400-188-5008
客服邮箱::
service@ccnpub.com
投诉举报::
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享