请选择 目标期刊

自动构建基于电视剧字幕和剧本的日常会话基础标注库 下载:44 浏览:369

梁宇海1 周强2 《当代中文学刊》 2020年2期

摘要:
真实对话数据量不足已经成为限制数据驱动的对话生成系统性能提升的主要因素,尤其是汉语语料。为了获得丰富的日常会话语料,可以利用字幕时间戳信息把英语电视剧的英文字幕及其对应的中文字幕进行同步,从而生成大量的汉英双语同步字幕。然后通过信息检索的方法把双语同步字幕的英文句子跟英语剧本的演员台词进行自动对齐,从而将剧本中的场景和说话者信息映射到双语字幕中,最后得到含有场景及说话者标注的汉英双语日常会话库。该文利用这种方法,自动构建了包含978 109对双语话语消息的接近人类日常会话的多轮会话数据库CEDAC。经过抽样分析,场景边界的标注准确率达到97.0%,而说话者的标注准确率也达到91.57%。该标注库为后续进行影视剧字幕说话者自动标注和多轮会话自动生成研究打下了很好的基础。

面向司法案件的案情知识图谱自动构建 下载:40 浏览:348

洪文兴1 胡志强1 翁洋2 张恒3 王竹4 郭志新5 《当代中文学刊》 2020年2期

摘要:
以法学知识为中心的认知智能是当前司法人工智能发展的重要方向。该文提出了以自然语言处理(NLP)为核心技术的司法案件案情知识图谱自动构建技术。以预训练模型为基础,对涉及的实体识别和关系抽取这两个NLP基本任务进行了模型研究与设计。针对实体识别任务,对比研究了两种基于预训练的实体识别模型;针对关系抽取任务,该文提出融合平移嵌入的多任务联合的语义关系抽取模型,同时获得了结合上下文的案情知识表示学习。在"机动车交通事故责任纠纷"案由下,和基准模型相比,实体识别的F1值可提升0.36,关系抽取的F1值提升高达2.37。以此为基础,该文设计了司法案件的案情知识图谱自动构建流程,实现了对数十万份判决书案情知识图谱的自动构建,为类案精准推送等司法人工智能应用提供语义支撑。

面向司法案件的案情知识图谱自动构建 下载:43 浏览:33

洪文兴1 胡志强1 翁洋2 张恒3 王竹4 郭志新5 《冶金学报》 2020年2期

摘要:
以法学知识为中心的认知智能是当前司法人工智能发展的重要方向。该文提出了以自然语言处理(NLP)为核心技术的司法案件案情知识图谱自动构建技术。以预训练模型为基础,对涉及的实体识别和关系抽取这两个NLP基本任务进行了模型研究与设计。针对实体识别任务,对比研究了两种基于预训练的实体识别模型;针对关系抽取任务,该文提出融合平移嵌入的多任务联合的语义关系抽取模型,同时获得了结合上下文的案情知识表示学习。在"机动车交通事故责任纠纷"案由下,和基准模型相比,实体识别的F1值可提升0.36,关系抽取的F1值提升高达2.37。以此为基础,该文设计了司法案件的案情知识图谱自动构建流程,实现了对数十万份判决书案情知识图谱的自动构建,为类案精准推送等司法人工智能应用提供语义支撑。

软件工程关联数据自动构建的方法 下载:236 浏览:2133

李忠义 冯欣鹏 王硕 《软件工程研究》 2022年8期

摘要:
随着人们对软件工程关联数据的关注程度越来越高,如何提升软件工程关联数据的构建质量,成为有关人员关注的重点问题。本文通过研究软件工程关联数据自动构建方法发现,对其进行研究,能够有效提升软件工程关联数据构建效率,同时还能够提升软件工程关联数据自动构建的准确性。由此可以看出,研究软件工程关联数据自动构建方法,能够为今后软件工程关联数据自动构建的发展奠定基础。
[1/1]
在线客服::点击联系客服
联系电话::400-188-5008
客服邮箱::service@ccnpub.com
投诉举报::feedback@ccnpub.com
人工客服

工作时间(9:00-18:00)
官方公众号

科技成果·全球共享