请选择 目标期刊

基于补全信息的篇章级神经机器翻译 下载:39 浏览:352

张培1 张旭2 熊德意1 《当代中文学刊》 2020年12期

摘要:
对于句子级别的神经机器翻译,由于不考虑句子所处的上下文信息,往往存在句子语义表示不完整的问题。该文通过依存句法分析,对篇章中的每句话提取有效信息,再将提取出的信息,补全到源端句子中,使得句子的语义表示更加完整。该文在汉语-英语语言对上进行了实验,并针对篇章语料稀少的问题,提出了在大规模句子级别的平行语料上的训练方法。相比于基准系统,该文提出的方法获得了1.47个BLEU值的提高。实验表明,基于补全信息的篇章级神经机器翻译,可以有效地解决句子级别神经机器翻译语义表示不完整的问题。

基于补全信息的篇章级神经机器翻译 下载:40 浏览:334

张培1 张旭2 熊德意1 2020年12期

摘要:
对于句子级别的神经机器翻译,由于不考虑句子所处的上下文信息,往往存在句子语义表示不完整的问题。该文通过依存句法分析,对篇章中的每句话提取有效信息,再将提取出的信息,补全到源端句子中,使得句子的语义表示更加完整。该文在汉语-英语语言对上进行了实验,并针对篇章语料稀少的问题,提出了在大规模句子级别的平行语料上的训练方法。相比于基准系统,该文提出的方法获得了1.47个BLEU值的提高。实验表明,基于补全信息的篇章级神经机器翻译,可以有效地解决句子级别神经机器翻译语义表示不完整的问题。

知识图谱补全算法综述 下载:69 浏览:339

丁建辉 贾维嘉 《信息通信与技术》 2018年1期

摘要:
知识图谱补全算法能让知识图谱变得更加完整,目前是人工智能领域的一个研究热点。为了更好地给出补全算法综述,文章按照能否处理新实体或者新关系,将知识图谱补全算法分成两类:静态知识图谱补全算法以及动态知识图谱补全算法。前者仅能处理实体以及关系都是固定的场景,扩展性较差。后者可以处理含有新实体或者新关系的场景,能够构造动态的知识图谱,具有更好的现实意义。文章主要结合相关工作对动态知识图谱补全算法进行系统性的总结,发现动态知识图谱算法的研究热度逐渐增加,如何更好更快地构建动态知识图谱是一个较好的研究点。
[1/1]
在线客服::点击联系客服
联系电话::400-188-5008
客服邮箱::service@ccnpub.com
投诉举报::feedback@ccnpub.com
人工客服

工作时间(9:00-18:00)
官方公众号

科技成果·全球共享