请选择 目标期刊

视觉回环检测的多约束深度距离学习方法 下载:48 浏览:376

陈良 金晟 杨慧 高瑜 孙荣川 孙立宁 《人工智能研究》 2020年9期

摘要:
在强场景变换下的视觉回环检测问题中,已有深度学习方法提取的特征描述子区分度不佳.针对此问题,文中深入分析多约束距离关系,提出视觉回环检测的多约束深度距离学习方法.首先,利用任意的卷积神经网络将原始图像映射为低维空间的特征描述子.然后,提出多约束损失函数,约束特征描述子之间的距离关系,并在线自动构造多约束训练样本集,提取更有区分度的低维特征.在New College、TUM数据集上的实验表明,文中方法提升强场景变化下回环检测的性能.
[1/1]
在线客服::点击联系客服
联系电话::400-188-5008
客服邮箱::service@ccnpub.com
投诉举报::feedback@ccnpub.com
人工客服

工作时间(9:00-18:00)
官方公众号

科技成果·全球共享