请选择 目标期刊

基于EEMD和LSTM的短期风速预测模型研究 下载:49 浏览:400

陆冰鉴1 周鹏1 王兴1,2 周可1 《软件工程研究》 2020年5期

摘要:
由于风具有较强的阵性和局地性,影响因子较多,利用机器学习相关技术进行风速的预测,往往会受这些影响,降低预测的准确率,特别是对于瞬时大风的预测,准确度普遍不高。针对上述问题,提出一种基于集合经验模态分解法(EEMD)和长短期记忆神经网络(LSTM)相结合的短期风速预测模型,该模型采用EEMD将风速序列分解为多个频域相对稳定的子序列,进而改善经验模态分解法(EMD)模态混叠现象,再采用LSTM构建预测模型,实现短期风速预测。该方法与其他预测方法相比,预测的精度更高,误差更小,验证了本文预测方法的可行性和有效性。
[1/1]
在线客服::点击联系客服
联系电话::400-188-5008
客服邮箱::service@ccnpub.com
投诉举报::feedback@ccnpub.com
人工客服

工作时间(9:00-18:00)
官方公众号

科技成果·全球共享