请选择 目标期刊

一种基于邻接矩阵的频繁项集挖掘算法 下载:74 浏览:340

廖纪勇 吴晟 刘爱莲 《数据与科学》 2020年12期

摘要:
针对Apriori算法存在反复扫描数据库、内存消耗大、运行效率低效等固有缺陷,提出了一种基于邻接矩阵的频繁项集挖掘算法。在该算法中,将事务数据集转换为邻接矩阵,通过遍历邻接矩阵,可以直接从矩阵中挖掘得出频繁1-项集和频繁2-项集,并且该过程不会生成候选项集,从而减少了遍历的空间规模。最后使用标准数据集进行验证测试,实验结果表明,改进后的算法比传统的Apriori算法具有更好的性能,在保证挖掘结果的同时还有效地提高了频繁项集的挖掘效率。

基于RAKEL算法的商品评论多标签分类研究与实现 下载:63 浏览:467

梁睿博 王思远 李壮 刘亚松 《软件工程研究》 2019年2期

摘要:
商品通常包含多个属性维度,准确找到商品评论中涉及的属性维度是文本挖掘工作的基础。RAKEL算法是多标签分类中问题转换思路的一种实现。在以往的工作中,由于子标签集合的随机性,没有充分发现和考虑标签之间的相关性,导致分类精度不高。为此,提出了改进的FI-RAKEL算法。首先通过FP-Growth算法得到标签的频繁项集,再从频繁项集和原始标签集合中选择标签构成新的标签子集,以此充分利用标签相关性训练基分类器。实验证明,改进的FI-RAKEL算法具有更好的评论文本多标签分类性能。
[1/1]
在线客服::点击联系客服
联系电话::400-188-5008
客服邮箱::service@ccnpub.com
投诉举报::feedback@ccnpub.com
人工客服

工作时间(9:00-18:00)
官方公众号

科技成果·全球共享