检 索
学术期刊
切换导航
首页
文章
期刊
投稿
首发
学术会议
图书中心
新闻
新闻动态
科学前沿
合作
我们
一封信
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
我要投稿
查看投稿进度
学术期刊
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
在线客服
客服电话:
400-188-5008
客服邮箱:
service@ccnpub.com
投诉举报:
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享
请选择
目标期刊
首页
期刊
文章
神经图像风格转换算法研究
下载:
77
浏览:
484
吴秋俊
张鹏
《计算机研究与应用》
2020年11期
摘要:
Gatys等人的开创性工作,展示卷积神经网络(CNN)在创造艺术作品方面的强大能力。通过分离和重新组合图像内容和样式来实现图像风格迁移.使用CNN渲染内容图像的过程不同样式称为神经样式传输(NST)。从那时起,NST成功在学术文献和工业得到应用,它正受到越来越多的关注,并提出各种方法来改善或扩展原始的NST算法,旨在全面概述NST的最新进展,并且对现有的经典和改进的风格算法进行分类,并比较其中一些结果。最后,经过研究,提出关于图像风格转换的发展趋势的一些建议。
[1/1]
|<
<
1
>
>|
在线客服::
点击联系客服
联系电话::
400-188-5008
客服邮箱::
service@ccnpub.com
投诉举报::
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享