检 索
学术期刊
切换导航
首页
文章
期刊
投稿
首发
学术会议
图书中心
新闻
新闻动态
科学前沿
合作
我们
一封信
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
我要投稿
查看投稿进度
学术期刊
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
在线客服
客服电话:
400-188-5008
客服邮箱:
service@ccnpub.com
投诉举报:
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享
请选择
目标期刊
首页
期刊
文章
面向中文网络评论情感分类的集成学习框架
下载:
25
浏览:
227
黄佳锋1
薛云1,2
卢昕1
刘志煌1
吴威1
黄英仁1
李万理1
陈鑫1,3
《中文研究》
2018年4期
摘要:
该文针对中文网络评论情感分类任务,提出了一种集成学习框架。首先针对中文网络评论复杂多样的特点,采用词性组合模式、频繁词序列模式和保序子矩阵模式作为输入特征。然后采用基于信息增益的随机子空间算法解决文本特征繁多的问题,同时提高基分类器的分类性能。最后基于产品属性构造基分类器算法综合评论文本中每个属性的情感信息,进而判别评论的句子级情感倾向。实验结果表明了该框架在中文网络评论情感分类任务上的有效性,特别是在Logistic Regression分类算法上准确率达到90.3%。
[1/1]
|<
<
1
>
>|
在线客服::
点击联系客服
联系电话::
400-188-5008
客服邮箱::
service@ccnpub.com
投诉举报::
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享