检 索
学术期刊
切换导航
首页
文章
期刊
投稿
首发
学术会议
图书中心
新闻
新闻动态
科学前沿
合作
我们
一封信
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
我要投稿
查看投稿进度
学术期刊
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
在线客服
客服电话:
400-188-5008
客服邮箱:
service@ccnpub.com
投诉举报:
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享
请选择
目标期刊
首页
期刊
文章
基于分布式聚类模型的电力负荷特性分析
下载:
88
浏览:
495
曾楠1
许元斌2
罗义旺2
刘青2
刘燕秋2
张欢2
《电力研究》
2018年1期
摘要:
电力系统的负荷模型是决定电力系统可靠性的关键要素,传统的负荷特性数据聚类算法计算复杂、运行时间长。将K-means和Canopy聚类算法有机地结合,建立一种分布式聚类模型。在此基础上,对用户整点负荷数据进行归一化处理,利用负荷规范化区间值与24个整点时间的参数关系,得到聚类中心分布。以福建省历史日负荷数据为例,验证分布式聚类模型运行的快速性。结果表明:距离阈值T2与算法运行时间成反比;簇个数越多,运行时间越长;大工业行业聚类中心分布稳定,显著性不明显,农业生产行业聚类中心分布显著性明显,为预测用户负荷特征及用电特性提供思路借鉴。
[1/1]
|<
<
1
>
>|
在线客服::
点击联系客服
联系电话::
400-188-5008
客服邮箱::
service@ccnpub.com
投诉举报::
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享