请选择 目标期刊

基于深度学习与二维离散小波分解特征相融合的adaboost人脸识别模型 下载:56 浏览:389

黄健 《软件工程研究》 2020年4期

摘要:
为了提高人脸识别的效率,本文提出了一种将小波分析、深度学习和adaboost分类器相结合的人脸识别方法。传统的基于小波变换的人脸识别算法仅仅提取了小波分解的低频分量用于分类图像的特征,为了更有效地提取人脸图像特征,提出了一种将传统特征和深度特征相融合的人脸识别算法。首先,通过二维离散小波变换函数对人脸图像进行二维离散小波变换,提取出人脸图像的低频部分作为特征值,接着通过深度残差网络提取人脸深度特征,最后将融合后的特征应用adaboost分类器进行分类识别。通过在ORL人脸库实验证明,融合后的方法能有效地提高分类识别率。

基于混合采样AdaBoost的地中海贫血数据诊断研究 下载:68 浏览:458

宋耀莲 1徐文林1 邹团标2 《数据与科学》 2020年11期

摘要:
地中海贫血病是一种严重的血红蛋白病,目前尚无根治方法,中、重型患者会给家庭和社会带来沉重负担,有效避免其患儿的出生变得尤为重要。目前机器学习在地中海贫血预警领域应用不广,文中提出了一种新的混合采样AdaBoost算法,对少类样本进行DSMOTE处理,对多类样本采用随机下采样处理,并将平衡后的数据集送入AdaBoost分类器进行分类训练。针对不同的采样方法和分类器进行仿真验证,结果表明所提方法的综合性能评估具有一定的优越性,对地中海贫血临床预警有一定指导意义。

基于遗传寻优的双阈值型AdaBoost分类器 下载:77 浏览:441

张梦娇 叶庆卫 陆志华 周宇 《数据与科学》 2020年6期

摘要:
针对双阈值型AdaBoost分类器存在搜索弱分类器过程复杂和训练耗时长的问题,结合遗传算法的思想,提出了一种基于遗传寻优的双阈值型AdaBoost分类器。该方法通过对特征和两个阈值的编码来寻找弱分类器,利用遗传算法的全局寻优性,能够快速寻找到最佳弱分类器,减少训练时间。另外,在此基础上提出设置两阈值之间最小间距的方法,增强其抗干扰能力,具有更好的鲁棒性。为验证实验效果,对MIT-CBCL人脸库提取局部二值模式(Local Binary Pattern,LBP)特征进行验证。实验结果显示,改进后的双阈值型AdaBoost分类器比经典AdaBoost分类器在训练时间上提升了5倍,比双阈值型AdaBoost分类器提升了18倍,具有更快的收敛速度。与此同时,因为增加了两阈值之间的最小间距,改进后的算法具有更强的抗噪性能。

基于多识别区域融合的机动车驾驶员检测框架 下载:88 浏览:488

霍星1 檀结庆1 赵峰2 景永俊3 邵堃3 《人工智能研究》 2018年4期

摘要:
受光照条件、图像噪声和复杂背景等因素的影响,在机动车驾驶员检测过程中难以获取不同卡口图像下的驾驶员特征.为了解决上述问题,文中提出基于多识别区域融合的精准驾驶员位置检测框架,用于提高驾驶员识别率.首先基于图像梯度特征算法获得车牌定位,然后使用自适应方法得到车窗区域,最后采用多识别区域融合策略得到准确的驾驶员区域.在10个图像测试库上的测试表明,文中方法可以获得较高的识别率.

基于AdaBoost的场景车牌号精确定位研究 下载:39 浏览:474

王健 李中浩 《航空航天学报》 2019年12期

摘要:
场景文本检测与识别对于自然场景的理解、图像中物体信息的获取以及自动驾驶与导航等研究有非常重要的作用。其中场景车牌号识别属于场景文本检测与识别的一个分支,在自然场景中,由于背景复杂、光线暗、模糊等原因,往往造成检测结果的不准确。文本识别的第一步是文本区域的定位,本研究先对图像使用水平滤波器过滤掉大部分背景,然后使用AdaBoost训练haar-like分类器,粗略定位车牌位置,对目标区域进行二值化处理,获得车牌上下边界的点集合,去掉噪点后进行拟合,获得车牌上下边界。对目标区域进行垂直方向投影,根据累加值判断车牌左右边界,从而实现车牌号的精定位。通过实验测试,该算法的准确率和检测效率高。

基于振动模态参数识别的脑电信号特征提取 下载:51 浏览:444

杨怀花 叶庆卫 《天线研究》 2021年4期

摘要:
对运动想象脑电信号的动力学模型进行了分析,将其分成两个阶段(强非线性的瞬态阶段和弱非线性的自由响应阶段),并构建了一种新的特征提取算法。首先通过起始点扫描的方式对脑电信号进行分割来获得自由响应阶段的脑电信号;然后针对自由响应阶段产生的脑电信号,引入振动多模态参数识别ITD(Ibrahim Time Domain)算法来提取特征组合成特征向量;最后利用Adaboost分类器进行自适应特征选择和分类。运用此方法对国际标准数据库The largest SCP data of Motor-Imagery中的CLA运动想象数据集进行特征提取和特征选择与分类,其平均分类准确率高达90%以上。与现有的特征提取算法相比,获得了更好的分类性能和稳定性。

基于双特征的改进型AdaBoost人脸检测算法 下载:59 浏览:455

张均 叶庆卫 《天线研究》 2020年3期

摘要:
针对传统AdaBoost算法在单特征分类器训练时耗费时间长、弱分类器质量低的问题,本文提出一种基于双特征的改进型AdaBoost分类检测算法。首先,通过粒子群寻优算法(PSO)搜寻最优的两个特征,以及两特征对应的阈值,形成双特征型弱分类器。接着将弱分类器组合成强分类器,最后在MATLAB软件中利用MIT人脸数据库进行仿真实验,结果表明本文基于双特征的分类器性能优于单特征分类器。
[1/1]
在线客服::点击联系客服
联系电话::400-188-5008
客服邮箱::service@ccnpub.com
投诉举报::feedback@ccnpub.com
人工客服

工作时间(9:00-18:00)
官方公众号

科技成果·全球共享