基于深度强化学习的交通信号灯控制
陈树德 彭佳汉 高旭 赖晓晨
生成PDF 清样下载 引用

复制成功

导出题录

参考文献( GB/T 7714-2015 ) 复制

陈树德 彭佳汉 高旭 赖晓晨,. 基于深度强化学习的交通信号灯控制[J]. 计算机研究与应用,2020.9. DOI:.
摘要:
交通问题具有非线性,不确定性的特征,传统算法往往难以取得较好的效果。深度学习模型在处理非线性、时序性的数据上拥有良好的表现。由此,提出一种基于深度强化学习的信号灯控制系统。该系统包括了几个部分:1)使用实时的交通数据或仿真环境产生数据;2)通过LSTM循环神经网络预测未来的交通信息;3)使用DDPG深度强化学习模型进行决策。在多个数据集上的实验验证算法的优越性及泛化能力。
关键词: 预测交通状态优化信号灯时间深度强化学习循环神经网络
DOI:
基金资助:

》在线投稿系统

*文章题目:
*作者姓名:
*电子邮箱:
*通讯地址:
*联系方式:

  备      注:

*上传稿件:

支持上传.doc,.docx,.pdf,.txt,.wps文件

投稿须知:

1、审稿结果将于1~7个工作日以邮件告知,请注意查收(包含录用通知书、审稿意见、知网CNKI查重报告)。

2、提交投稿后,若7个工作日之内未接到录用通知,则说明该文章未被录用,请另投他刊。

3、凡投寄本刊稿件,如在内容上有侵权行为或不妥之处,均应文责自负。本刊有权对来稿进行文字编辑、加工和修改,如不同意,请附说明,以便妥善处理。

4、多作者文稿署名时须征得其他作者同意,排好先后次序,通知用稿后不再改动。

5、凡投往本刊稿件一经录用发表,其版权归本刊所有。

6、本刊已全文录入中国知网、万方、维普等数据库,如作者不同意被收录,请提前申明,未申明者,本刊一律视为同意被收录。

7、请勿一稿多投。