基于词向量的中文事件发现及表示
张斌 胡琳梅 侯磊 李涓子
生成PDF 清样下载 引用

复制成功

导出题录

参考文献( GB/T 7714-2015 ) 复制

张斌 胡琳梅 侯磊 李涓子 ​,. 基于词向量的中文事件发现及表示[J]. 人工智能研究,2018.4. DOI:.
摘要:
已有的事件发现方法主要基于词频-逆文档频率文档表示,维度较高,语义稀疏,效率和准确率都较低,不适用于大规模在线新闻事件发现.因此,文中提出基于词向量的文档表示方法,降低文档表示维度,缓解语义稀疏问题,提高文档相似度计算效率和准确性.基于该文档表示方法,提出动态在线新闻聚类方法,用于在线新闻事件发现,同时提高事件发现的准确率和召回率.在标准数据集TDT4和真实数据集上的实验表明,相比当前通用的基线方法,文中方法在时间效率和事件质量上都有显著提高.
关键词: 词向量事件发现动态在线聚类
DOI:
基金资助:

》在线投稿系统

*文章题目:
*作者姓名:
*电子邮箱:
*通讯地址:
*联系方式:

  备      注:

*上传稿件:

支持上传.doc,.docx,.pdf,.txt,.wps文件

投稿须知:

1、审稿结果将于1~7个工作日以邮件告知,请注意查收(包含录用通知书、审稿意见、知网CNKI查重报告)。

2、提交投稿后,若7个工作日之内未接到录用通知,则说明该文章未被录用,请另投他刊。

3、凡投寄本刊稿件,如在内容上有侵权行为或不妥之处,均应文责自负。本刊有权对来稿进行文字编辑、加工和修改,如不同意,请附说明,以便妥善处理。

4、多作者文稿署名时须征得其他作者同意,排好先后次序,通知用稿后不再改动。

5、凡投往本刊稿件一经录用发表,其版权归本刊所有。

6、本刊已全文录入中国知网、万方、维普等数据库,如作者不同意被收录,请提前申明,未申明者,本刊一律视为同意被收录。

7、请勿一稿多投。