基于在线学习型哈希的最近邻查找算法研究进展
胡伟 任艳多 孙瑶
生成PDF 清样下载 引用

复制成功

导出题录

参考文献( GB/T 7714-2015 ) 复制

胡伟 任艳多 孙瑶,. 基于在线学习型哈希的最近邻查找算法研究进展[J]. 数据与科学,2018.2. DOI:.
摘要:
快速最近邻搜索在大规模数据的计算机应用变得越来越重要。具有快速搜索机制和紧凑的索引结构的哈希方法有着至关重要的作用。大多数目前的监督哈希方法都采用批量模型。但是,批量学习策略在面对大型数据集时可能效率不高。而且,对于批量学习来说,随着数据集的不断发展和随着时间的推移出现新的变化,在线监督哈希技术提出适应性数据的哈希函数。本文讨论了多种在线学习哈希方法的异同,并针对目前研究现状分析在线哈希后续工作研究方向。
关键词: 在线学习型哈希监督学习最近邻查找
DOI:
基金资助:

》在线投稿系统

*文章题目:
*作者姓名:
*电子邮箱:
*通讯地址:
*联系方式:

  备      注:

*上传稿件:

支持上传.doc,.docx,.pdf,.txt,.wps文件

投稿须知:

1、审稿结果将于1~7个工作日以邮件告知,请注意查收(包含录用通知书、审稿意见、知网CNKI查重报告)。

2、提交投稿后,若7个工作日之内未接到录用通知,则说明该文章未被录用,请另投他刊。

3、凡投寄本刊稿件,如在内容上有侵权行为或不妥之处,均应文责自负。本刊有权对来稿进行文字编辑、加工和修改,如不同意,请附说明,以便妥善处理。

4、多作者文稿署名时须征得其他作者同意,排好先后次序,通知用稿后不再改动。

5、凡投往本刊稿件一经录用发表,其版权归本刊所有。

6、本刊已全文录入中国知网、万方、维普等数据库,如作者不同意被收录,请提前申明,未申明者,本刊一律视为同意被收录。

7、请勿一稿多投。