基于深度学习的工业车辆驾驶行为识别
李俊杰1 邓海勤2 高志勇2 张勇1
生成PDF 清样下载 引用

复制成功

导出题录

参考文献( GB/T 7714-2015 ) 复制

李俊杰1 邓海勤2 高志勇2 张勇1,. 基于深度学习的工业车辆驾驶行为识别[J]. 信息通信与技术,2019.2. DOI:.
摘要:
文章提出一种基于深度学习的工业车辆驾驶行为识别的方法。该方法对工业车辆在实际工厂环境中行驶的特点进行分析,将三轴加速度传感器和三轴角速度传感器采集到的数据进行预处理,根据处理结果将数据送入深度神经网络训练,完成对工业车辆驾驶行为的识别。系统先对样本数据使用数据插值、标准化处理等方法进行预处理,通过数据增强算法减少过拟合的影响,再基于长短期记忆网络(LSTM)处理时间序列数据,构建出CNN+LSTM的深度网络模型,用于驾驶行为的识别。测试结果表明,所提模型识别整体准确率可达96.51%,能够准确地识别出工业车辆行驶的状态。
关键词: 深度学习驾驶行为识别CNN+LSTM工业车辆
DOI:
基金资助:

》在线投稿系统

*文章题目:
*作者姓名:
*电子邮箱:
*通讯地址:
*联系方式:

  备      注:

*上传稿件:

支持上传.doc,.docx,.pdf,.txt,.wps文件

投稿须知:

1、审稿结果将于1~7个工作日以邮件告知,请注意查收(包含录用通知书、审稿意见、知网CNKI查重报告)。

2、提交投稿后,若7个工作日之内未接到录用通知,则说明该文章未被录用,请另投他刊。

3、凡投寄本刊稿件,如在内容上有侵权行为或不妥之处,均应文责自负。本刊有权对来稿进行文字编辑、加工和修改,如不同意,请附说明,以便妥善处理。

4、多作者文稿署名时须征得其他作者同意,排好先后次序,通知用稿后不再改动。

5、凡投往本刊稿件一经录用发表,其版权归本刊所有。

6、本刊已全文录入中国知网、万方、维普等数据库,如作者不同意被收录,请提前申明,未申明者,本刊一律视为同意被收录。

7、请勿一稿多投。