基于字典学习的稠密光场重建算法
夏正德1 宋娜1 刘宾2 潘晋孝2 闫文敏3 邵子惠4
生成PDF 清样下载 引用

复制成功

导出题录

参考文献( GB/T 7714-2015 ) 复制

夏正德1 宋娜1 刘宾2 潘晋孝2 闫文敏3 邵子惠4,. 基于字典学习的稠密光场重建算法[J]. 现代物理学报,2020.11. DOI:.
摘要:
相机阵列是获取空间中目标光场信息的重要手段,采用大规模密集相机阵列获取高角度分辨率光场的方法增加了采样难度和设备成本,同时产生的大量数据的同步和传输需求也限制了光场采样规模.为了实现稀疏光场采样的稠密重建,本文基于稀疏光场数据,分析同一场景多视角图像的空间、角度信息的关联性和冗余性,建立有效的光场字典学习和稀疏编码数学模型,并根据稀疏编码元素间的约束关系,建立虚拟角度图像稀疏编码恢复模型,提出变换域稀疏编码恢复方法,并结合多场景稠密重建实验,验证提出方法的有效性.实验结果表明,本文方法能够对场景中的遮挡、阴影以及复杂的光影变化信息进行高质量恢复,可以用于复杂场景的稀疏光场稠密重建.本研究实现了线性采集稀疏光场的稠密重建,未来将针对非线性采集稀疏光场的稠密重建进行研究,以推进光场成像在实际工程中的应用.
关键词: 光场字典学习稀疏编码稠密重建
DOI:
基金资助:

》在线投稿系统

*文章题目:
*作者姓名:
*电子邮箱:
*通讯地址:
*联系方式:

  备      注:

*上传稿件:

支持上传.doc,.docx,.pdf,.txt,.wps文件

投稿须知:

1、审稿结果将于1~7个工作日以邮件告知,请注意查收(包含录用通知书、审稿意见、知网CNKI查重报告)。

2、提交投稿后,若7个工作日之内未接到录用通知,则说明该文章未被录用,请另投他刊。

3、凡投寄本刊稿件,如在内容上有侵权行为或不妥之处,均应文责自负。本刊有权对来稿进行文字编辑、加工和修改,如不同意,请附说明,以便妥善处理。

4、多作者文稿署名时须征得其他作者同意,排好先后次序,通知用稿后不再改动。

5、凡投往本刊稿件一经录用发表,其版权归本刊所有。

6、本刊已全文录入中国知网、万方、维普等数据库,如作者不同意被收录,请提前申明,未申明者,本刊一律视为同意被收录。

7、请勿一稿多投。