基于局部二值模式与深度置信网络的人脸识别
满忠昂1 刘纪敏2 孙宗锟1
生成PDF 清样下载 引用

复制成功

导出题录

参考文献( GB/T 7714-2015 ) 复制

满忠昂1 刘纪敏2 孙宗锟1 ,. 基于局部二值模式与深度置信网络的人脸识别[J]. 软件工程研究,2020.12. DOI:.
摘要:
针对现在的大多算法在提取人脸特征时直接提取整个人脸,而忽略局部的细节特征,提出一种将人脸图像进行分块局部运用LBP算子然后与深度置信网络结合的人脸识别算法(BPBN)。首先,将人脸图像进行分块,对分块后的图像提取LBP进行统计,将生成的LBP直方图按照一定秩序组合连接成新的特征向量。其次,将得到的LBP特征作为深度置信网络(DBN)的输入,采用贪婪算法逐层进行训练,然后用反向传播(BP)算法对训练得到的深度置信网络进行优化。最后,用训练好的深度置信网络对人脸进行识别。在ORL人脸数据库上进行实验,识别率达到96.0%,然后与传统的主成分分析(PCA)算法集成支持向量机(SVM)的方法进行相比,识别率有较为显著的提升,说明该方法具有更好的人脸识别效果。
关键词: ​局部二值模式人脸识别受限波尔兹曼机深度置信网络
DOI:
基金资助:

》在线投稿系统

*文章题目:
*作者姓名:
*电子邮箱:
*通讯地址:
*联系方式:

  备      注:

*上传稿件:

支持上传.doc,.docx,.pdf,.txt,.wps文件

投稿须知:

1、审稿结果将于1~7个工作日以邮件告知,请注意查收(包含录用通知书、审稿意见、知网CNKI查重报告)。

2、提交投稿后,若7个工作日之内未接到录用通知,则说明该文章未被录用,请另投他刊。

3、凡投寄本刊稿件,如在内容上有侵权行为或不妥之处,均应文责自负。本刊有权对来稿进行文字编辑、加工和修改,如不同意,请附说明,以便妥善处理。

4、多作者文稿署名时须征得其他作者同意,排好先后次序,通知用稿后不再改动。

5、凡投往本刊稿件一经录用发表,其版权归本刊所有。

6、本刊已全文录入中国知网、万方、维普等数据库,如作者不同意被收录,请提前申明,未申明者,本刊一律视为同意被收录。

7、请勿一稿多投。