机床主轴承多源信息融合故障诊断
刘胜 吴迪 李芃
生成PDF 清样下载 引用

复制成功

导出题录

参考文献( GB/T 7714-2015 ) 复制

刘胜 吴迪 李芃,. 机床主轴承多源信息融合故障诊断[J]. 中国航空航天科学,2018.3. DOI:.
摘要:
针对机床主轴承的故障诊断,为解决传统方法仅由单一传感器数据分析准确性低的问题,提出基于主元小波包、递归神经网络以及振动及噪声信号多源数据融合的轴承故障诊断方法,实现对锻压机床主轴承的故障诊断。将振动及噪声传感器采集的信号,经主元小波包处理提取特征值,再利用递归神经网络进行局部故障诊断,得到不同传感器对轴承故障互相独立的故障证据,然后采用基于数据修正D-S证据理论将振动及噪声诊断结果融合,发现基于递归神经网络及数据修正D-S证据理论的诊断方法。该方法解决了单一传感器的不稳定性和局限性以及传统D-S证据理论冲突证据失效的问题,使故障诊断具备容错能力,提高了传统故障诊断的精确度。
关键词: 机床主轴承故障诊断振动噪声分析主元小波包递归神经网络多源数据融合
DOI:
基金资助:

》在线投稿系统

*文章题目:
*作者姓名:
*电子邮箱:
*通讯地址:
*联系方式:

  备      注:

*上传稿件:

支持上传.doc,.docx,.pdf,.txt,.wps文件

投稿须知:

1、审稿结果将于1~7个工作日以邮件告知,请注意查收(包含录用通知书、审稿意见、知网CNKI查重报告)。

2、提交投稿后,若7个工作日之内未接到录用通知,则说明该文章未被录用,请另投他刊。

3、凡投寄本刊稿件,如在内容上有侵权行为或不妥之处,均应文责自负。本刊有权对来稿进行文字编辑、加工和修改,如不同意,请附说明,以便妥善处理。

4、多作者文稿署名时须征得其他作者同意,排好先后次序,通知用稿后不再改动。

5、凡投往本刊稿件一经录用发表,其版权归本刊所有。

6、本刊已全文录入中国知网、万方、维普等数据库,如作者不同意被收录,请提前申明,未申明者,本刊一律视为同意被收录。

7、请勿一稿多投。