基于领域知识的增强约束词向量
王恒升1,2 刘通1 任晋1
生成PDF 清样下载 引用

复制成功

导出题录

参考文献( GB/T 7714-2015 ) 复制

王恒升1,2 刘通1 任晋1,. 基于领域知识的增强约束词向量[J]. 当代中文学刊,2019.12. DOI:.
摘要:
词向量是一种词语的数字化的表达。基于神经网络模型,利用语料中词语之间的上下文关系这一约束条件,通过大量训练得到词向量。词向量在表达词的语义上的表现给人以无限的希望与想象空间,基于词向量的文本分类、人机对话、智能检索等得到了广泛的研究。该文针对校园信息查询的特定应用,建立了所涉及词语的分类本体,除了利用语料中词语上下文关系外,还将本体知识作为约束条件进行词向量的训练,增强了词向量的语义表达。基于skip-gram模型,采用多任务的神经网络训练方法,在自己收集的语料上训练得到了针对领域的词向量。实验表明,基于领域知识的增强约束词向量能够更准确地表达词的语义信息。
关键词: 增强约束词向量语义表达本体知识
DOI:
基金资助:

》在线投稿系统

*文章题目:
*作者姓名:
*电子邮箱:
*通讯地址:
*联系方式:

  备      注:

*上传稿件:

支持上传.doc,.docx,.pdf,.txt,.wps文件

投稿须知:

1、审稿结果将于1~7个工作日以邮件告知,请注意查收(包含录用通知书、审稿意见、知网CNKI查重报告)。

2、提交投稿后,若7个工作日之内未接到录用通知,则说明该文章未被录用,请另投他刊。

3、凡投寄本刊稿件,如在内容上有侵权行为或不妥之处,均应文责自负。本刊有权对来稿进行文字编辑、加工和修改,如不同意,请附说明,以便妥善处理。

4、多作者文稿署名时须征得其他作者同意,排好先后次序,通知用稿后不再改动。

5、凡投往本刊稿件一经录用发表,其版权归本刊所有。

6、本刊已全文录入中国知网、万方、维普等数据库,如作者不同意被收录,请提前申明,未申明者,本刊一律视为同意被收录。

7、请勿一稿多投。