摘要:
大数据时代,文本数据量的爆炸式增长使得特征选择成为文本挖掘领域最关键的任务之一。文档中的词语和模式规模庞杂,故需保证所挖掘特征的质量充满挑战。"基于模式"特征选择方法具有传统"基于词语"方法所没有的优越特性,可以进行有效地信息去噪,提升文本挖掘性能。该文提出基于包含度和频繁模式的文本特征选择方法:首先,定义基于包含度的相似性度量原理;然后,提出基于包含度的冗余文本频繁模式过滤方法。基于包含度度量文本频繁模式间相似性,以此去除子模式及相似度较高的交叉模式。再通过冗余模式去噪,提升文本频繁模式挖掘性能;提出基于关联度的文本特征选择方法。以经过过滤处理后的非冗余文本频繁模式为基础,进行文本特征选择,并利用词语与文档的关联度进行词语类别划分及权重分配。使所选特征与文档关联度更加清晰,分类效果更好。通过在数据集Reuters-21578上的实验得知,基于包含度和频繁模式的文本特征选择算法性能,优于当前普遍应用的传统文本特征选择方法和新的特征选择及特征抽取方法。