基于相似消息的流行度预测方法
高金华1,2 沈华伟1,2 程学旗1,2 刘悦1
生成PDF 清样下载 引用

复制成功

导出题录

参考文献( GB/T 7714-2015 ) 复制

高金华1,2 沈华伟1,2 程学旗1,2 刘悦1,. 基于相似消息的流行度预测方法[J]. 中文研究,2018.11. DOI:.
摘要:
社交网络中消息的流行度预测问题在很多应用领域都有着重要意义。传统的流行度预测方法包括基于特征的方法和基于点过程的方法。基于点过程的方法无法利用历史消息的信息,而基于特征的方法则使用一个统一的模型来对所有的消息进行预测,没有考虑消息的特异性。因此,该文提出了一种基于相似消息的流行度预测方法。对于待预测微博,我们从历史消息选取出与之最相似的前K条消息来进行预测。在计算消息相似度时,我们借助了文档建模领域的LDA模型来学习消息的表示。在数据集上的实验结果表明,该方法可以有效发现在传播模式上与待预测消息相似的历史消息,并在流行度预测任务上取得了比对比模型更好的预测效果。
关键词: 流行度预测相似消息LDA模型
DOI:
基金资助:

》在线投稿系统

*文章题目:
*作者姓名:
*电子邮箱:
*通讯地址:
*联系方式:

  备      注:

*上传稿件:

支持上传.doc,.docx,.pdf,.txt,.wps文件

投稿须知:

1、审稿结果将于1~7个工作日以邮件告知,请注意查收(包含录用通知书、审稿意见、知网CNKI查重报告)。

2、提交投稿后,若7个工作日之内未接到录用通知,则说明该文章未被录用,请另投他刊。

3、凡投寄本刊稿件,如在内容上有侵权行为或不妥之处,均应文责自负。本刊有权对来稿进行文字编辑、加工和修改,如不同意,请附说明,以便妥善处理。

4、多作者文稿署名时须征得其他作者同意,排好先后次序,通知用稿后不再改动。

5、凡投往本刊稿件一经录用发表,其版权归本刊所有。

6、本刊已全文录入中国知网、万方、维普等数据库,如作者不同意被收录,请提前申明,未申明者,本刊一律视为同意被收录。

7、请勿一稿多投。