基于Transformer的AMR-to-Text生成
朱杰 李军辉
生成PDF 清样下载 引用

复制成功

导出题录

参考文献( GB/T 7714-2015 ) 复制

朱杰 李军辉,. 基于Transformer的AMR-to-Text生成[J]. 中文研究,2020.5. DOI:.
摘要:
抽象语义表示到文本(AMR-to-Text)的生成任务是给定AMR图,生成相同意义表示的文本。可以把此任务当成一个从源端AMR图到目标端句子的翻译任务。然而,传统的序列到序列(seq2seq, S2S)方法使用循环递归网络进行编码,并不能很好地解决长距离依赖的问题。当前最好的性能是图到序列(graph2seq, G2S)的模型,使用了图模型直接对AMR图结构进行编码,但是,该方法对于非直接相连的节点依然会损失大量的结构信息。针对上述问题,基于seq2seq框架,该文提出了一种直接而有效的AMR-to-Text生成方法。在这项工作中,引入了当前最优的seq2seq模型Transformer作为基准模型,并且使用字节对编码(BPE)和共享词表的方法来联合处理未登录词(OOV)的问题。在现有的两份英文标准数据集上,实验结果都得到了显著的提升,达到了新的最高性能。
关键词: AMR-to-Text生成序列到序列模型字节对编码共享词表未登录词
DOI:
基金资助:

》在线投稿系统

*文章题目:
*作者姓名:
*电子邮箱:
*通讯地址:
*联系方式:

  备      注:

*上传稿件:

支持上传.doc,.docx,.pdf,.txt,.wps文件

投稿须知:

1、审稿结果将于1~7个工作日以邮件告知,请注意查收(包含录用通知书、审稿意见、知网CNKI查重报告)。

2、提交投稿后,若7个工作日之内未接到录用通知,则说明该文章未被录用,请另投他刊。

3、凡投寄本刊稿件,如在内容上有侵权行为或不妥之处,均应文责自负。本刊有权对来稿进行文字编辑、加工和修改,如不同意,请附说明,以便妥善处理。

4、多作者文稿署名时须征得其他作者同意,排好先后次序,通知用稿后不再改动。

5、凡投往本刊稿件一经录用发表,其版权归本刊所有。

6、本刊已全文录入中国知网、万方、维普等数据库,如作者不同意被收录,请提前申明,未申明者,本刊一律视为同意被收录。

7、请勿一稿多投。