部首感知的中文医疗命名实体识别
李丹1,2 徐童1,2 郑毅3王喆锋3 陈恩红1,2
生成PDF 清样下载 引用

复制成功

导出题录

参考文献( GB/T 7714-2015 ) 复制

李丹1,2 徐童1,2 郑毅3王喆锋3 陈恩红1,2,. 部首感知的中文医疗命名实体识别[J]. 中文研究,2020.9. DOI:.
摘要:
人工智能技术的发展推动了医疗领域的智能化,为提升医疗效率、改善医疗水平提供了新的助力。同时,这一新的趋势也催生了海量的电子病历文本,其所蕴含的丰富信息具有巨大的潜在挖掘与应用价值。然而,当前中文电子病历的命名实体识别研究工作并没有全面考虑中文及中文医疗领域的特殊性,而是将面向通用数据集的模型迁移到医疗领域的实体类型中,分析效果较为有限。针对这一问题,该文设计了长短期记忆网络与条件随机场的联合模型并引入BERT模型;在此基础之上,考虑到医疗领域命名实体鲜明的部首特征,通过将部首信息编码到字向量中,并且结合部首信息修改条件随机场层得分函数的计算方式,有效地提升了医疗领域命名实体的抽取能力。通过两项电子病历数据集的实验结果表明,该文提出的模型整体效果略高于通用的实体识别模型,并对疾病诊断等特定类型的实体词的识别效果具有较为明显的提升。
关键词: 命名实体识别长短期记忆网络条件随机场BERT
DOI:
基金资助:

》在线投稿系统

*文章题目:
*作者姓名:
*电子邮箱:
*通讯地址:
*联系方式:

  备      注:

*上传稿件:

支持上传.doc,.docx,.pdf,.txt,.wps文件

投稿须知:

1、审稿结果将于1~7个工作日以邮件告知,请注意查收(包含录用通知书、审稿意见、知网CNKI查重报告)。

2、提交投稿后,若7个工作日之内未接到录用通知,则说明该文章未被录用,请另投他刊。

3、凡投寄本刊稿件,如在内容上有侵权行为或不妥之处,均应文责自负。本刊有权对来稿进行文字编辑、加工和修改,如不同意,请附说明,以便妥善处理。

4、多作者文稿署名时须征得其他作者同意,排好先后次序,通知用稿后不再改动。

5、凡投往本刊稿件一经录用发表,其版权归本刊所有。

6、本刊已全文录入中国知网、万方、维普等数据库,如作者不同意被收录,请提前申明,未申明者,本刊一律视为同意被收录。

7、请勿一稿多投。