PDF下载
基于医疗知识图谱的并发症辅助诊断

刘勘 张雅荃

中南财经政法大学信息与安全工程学院

摘要: 为了实现文本描述中的快速并发症的准确预判,该文结合知识图谱、表示学习、深度神经网络等方法构建了一个并发症辅助诊断模型。该模型首先构建医疗领域的知识图谱,并通过知识表示模型对医疗领域知识进行编码,结合患者主诉文本获取患者症状实体的表示向量,再将患者主诉表示向量和指标表示向量通过CNN-DNN网络对并发症进行辅助诊断。实验选取了糖尿病的3种并发症:高血压、糖尿病肾病和糖尿病视网膜病变作为测试。该文模型的准确率对比支持向量机、随机森林和单独的深度神经网络在高血压、糖尿病肾病和糖尿病视网膜病变上分别提高了5%、5%、14%和27%、6%、9%,说明该文模型能够充分融合医疗知识图谱和深度学习技术,对提高并发症的诊断起到积极作用。
关键词: 知识图谱;表示学习;深度学习;辅助诊断
DOI:
基金资助:
文章地址: