文章标题
作者姓名
关键词
单位名称
检索
AI智能检索
学术期刊
首页
文章
期刊
投稿
首发
学术会议
图书中心
新闻
新闻动态
科学前沿
合作
我们
一封信
按学科分类
按期刊分类
医药卫生
(21)
工程技术
(38)
数学与物理
(12)
经济与管理
(12)
人文社科
(41)
化学与材料
(9)
信息通讯
(10)
地球与环境
(25)
生命科学
(2)
首页
>
文章
深度信念网络优化BP神经网络的交通流预测模型
DOI
:
,
PDF
下载:
40
浏览: 261
作者
:
孔繁辉1
;
李健1,2
;
作者单位
:
1.天津理工大学循环经济与企业可持续发展研究中心;2.天津大学管理与经济学部
;
关键词
:
交通流预测
;
深度学习
;
深度信念网络
;
BP神经网络
;
限制玻尔兹曼机
;
摘要:
为提高BP神经网络预测精度,基于深度学习理论提出一种深度信念网络(DBN)算法优化传统BP神经网络预测模型。该预测算法由多层限制玻尔兹曼机(RBM)组成,采用无监督学习算法训练参数,然后利用反向学习微调网络参数,进而优化BP神经网络的阈值和权值,通过训练模型求得最优解。实验表明,该预测模型克服了传统神经网络容易陷入局部最优以及函数拟合度不高的缺点,可有效提高交通流预测精度。
投稿
相关文章
应用免疫检查点抑制剂慢性阻塞性肺病治疗的探索
体育课与课余体育活动整合研究
品管圈在提高跌倒高危病人复评率的效果观察及应用
摄食训练食物温度的精准分级对脑卒中吞咽障碍患者的影响研究
论存在函数不能用二次迭代函数表示
学术共建
清华大学出版社
北大中文系
国家工程技术数字图书馆
维普网
万方数据库
版权所有 © 2025 世纪中文出版社
京ICP备2024086036号-2