检 索
学术期刊
切换导航
首页
文章
期刊
投稿
首发
学术会议
图书中心
新闻
新闻动态
科学前沿
合作
我们
一封信
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
首页
文章
基于GoogLeNet Inception V3的迁移学习研究
DOI:
,
PDF
,
下载:
41
浏览: 276
作者:
薛晨兴 张军 邢家源
;
作者单位:
天津职业技术师范大学电子工程学院
;
关键词:
人工智能;Inception v3;迁移学习;深度卷积神经网络;目标检测
;
摘要:
随着人工智能的再度崛起,使用深度学习模型进行图像分类的方法得到了广泛关注。针对典型深度卷积神经网络模型是在大型数据库和大算力的基础上进行训练得到的,但普通机器学习工作者很难拿到如此规模的数据集和算力现象,本文在GoogLeNet Inception V3深度学习模型的基础上,对GoogLeNet的特征提取模块进行迁移学习来训练特定的模型进行图像分类。实验结果表明,在硬件和数据集相对不足的条件下,采用迁移学习的策略可以高效地实现目标检测。
投稿
相关文章
大数据技术在金融风控中的应用研究
程序化护理干预模式在脑出血患者中的应用及对认知水平的影响研究
一种用于小孔径攻丝的工装设计
一种便携式自动控制气动短路接地装置研制
关于建筑电气安装工程施工质量控制研究
学术共建
清华大学出版社
北大中文系
国家工程技术数字图书馆
维普网
万方数据库