文章标题
作者姓名
关键词
单位名称
检索
AI智能检索
学术期刊
首页
文章
期刊
投稿
首发
学术会议
图书中心
新闻
新闻动态
科学前沿
合作
我们
一封信
按学科分类
按期刊分类
医药卫生
(21)
工程技术
(38)
数学与物理
(12)
经济与管理
(12)
人文社科
(41)
化学与材料
(9)
信息通讯
(10)
地球与环境
(25)
生命科学
(2)
PDF下载
基于Transformer模型的5G功放预失真研究
王静怡 陈景豪 许高明
宁波大学信息科学与工程学院
摘要:
为了补偿功放的非线性失真和记忆效应,本文基于一种基于深度学习的Transformer模型用于射频功放非线性建模的数字预失真算法。该模型具有长时序依赖捕获和交互能力,可以很好地表征功放的强非线性失真和记忆效应。为了验证该模型的建模性能和线性化效果,对比了当下流行的数字预失真器模型,实验结果表明,相比于FFNN模型和LSTM模型,建模精度提高了~2.1dB,同时模型参数量减少了~21%。
关键词:
transformer;功放;记忆效应;深度学习
DOI:
基金资助:
文章地址:
版权所有 © 2025 世纪中文出版社
京ICP备2024086036号-2