检索
AI智能检索
学术期刊
首页
文章
期刊
投稿
首发
学术会议
图书中心
新闻
新闻动态
科学前沿
合作
我们
一封信
按学科分类
按期刊分类
医药卫生
(21)
工程技术
(38)
数学与物理
(12)
经济与管理
(12)
人文社科
(41)
化学与材料
(9)
信息通讯
(10)
地球与环境
(25)
生命科学
(2)
PDF下载
基于改进线性学习算法的核动力系统事故诊断研究
赵鑫 蔡琦 赵新文 王晓龙
海军工程大学核科学技术学院
摘要:
为解决核动力系统事故类型多样且故障严重程度难以确定的问题,在传统线性模型的基础上引入层级结构和嵌套结构,并选用支持向量机分类模型作为结构内的诊断模型;采用线性学习实现计算结果的融合,通过分析事故运行过程和机理选取单个分类模型的训练样本,并确定对应类别事故的有效识别区域及敏感参数。结果表明,本文提出的事故诊断框架的识别准确率达到99%以上,可为大型系统的事故诊断提供参考。
关键词:
事故诊断框架;改进线性学习;支持向量机;船用核动力系统
DOI:
基金资助:
文章地址:
版权所有 © 2025 世纪中文出版社
京ICP备2024086036号-2