当代中文学刊
当代中文学刊
《当代中文学刊》系开放获取期刊,本刊是研究中国文学和文化的学术刊物,侧重于近代以来的文学和文化研究,鼓励中文学科内部各专业的贯通,倡导中文学科与其它人文社会科学的交融,以弘扬人文精神、提倡学术创新、促进学术繁荣为宗旨。本刊集学术性、思想性为一体,旨在给世界范围内的科学家、学者、科研人员提供一个传播、分享和讨论该领域内不同方向问题与成果交流的学术平台。

ISSN: 3008-0282

《当代中文学刊》在线投稿系统

*文章题目:
*作者姓名:
*电子邮箱:
*通讯地址:
*联系方式:

  备      注:

*上传稿件:

支持上传.doc,.docx,.pdf,.txt,.wps文件

投稿须知:

1、审稿结果将于1~7个工作日以邮件告知,请注意查收(包含录用通知书、审稿意见、知网CNKI查重报告)。

2、提交投稿后,若7个工作日之内未接到录用通知,则说明该文章未被录用,请另投他刊。

3、凡投寄本刊稿件,如在内容上有侵权行为或不妥之处,均应文责自负。本刊有权对来稿进行文字编辑、加工和修改,如不同意,请附说明,以便妥善处理。

4、多作者文稿署名时须征得其他作者同意,排好先后次序,通知用稿后不再改动。

5、凡投往本刊稿件一经录用发表,其版权归本刊所有。

6、本刊已全文录入中国知网、万方、维普等数据库,如作者不同意被收录,请提前申明,未申明者,本刊一律视为同意被收录。

7、请勿一稿多投。



提示文字!

注:我们将于1~7个工作日告知您审稿结果,请耐心等待;

您也可以在官网首页点击“查看投稿进度”输入文章题目,查询稿件实时进程。


  • 基于补全信息的篇章级神经机器翻译 下载:39 浏览:348
  • 张培1 张旭2 熊德意1 《当代中文学刊》 2020年12期
  • 摘要:
    对于句子级别的神经机器翻译,由于不考虑句子所处的上下文信息,往往存在句子语义表示不完整的问题。该文通过依存句法分析,对篇章中的每句话提取有效信息,再将提取出的信息,补全到源端句子中,使得句子的语义表示更加完整。该文在汉语-英语语言对上进行了实验,并针对篇章语料稀少的问题,提出了在大规模句子级别的平行语料上的训练方法。相比于基准系统,该文提出的方法获得了1.47个BLEU值的提高。实验表明,基于补全信息的篇章级神经机器翻译,可以有效地解决句子级别神经机器翻译语义表示不完整的问题。
  • 从视觉到文本:图像描述生成的研究进展综述 下载:30 浏览:318
  • 魏忠钰1 范智昊1 王瑞泽2 承怡菁1 赵王榕1 黄萱菁3 《当代中文学刊》 2020年12期
  • 摘要:
    近年来,跨模态研究吸引了越来越多学者的关注,尤其是连接视觉和语言的相关课题。该文针对跨视觉和语言模态研究中的核心任务——图像描述生成,进行文献综述。该文从基于视觉的文本生成框架、基于视觉的文本生成研究中的关键问题、图像描述生成模型的性能评价和图像描述生成模型的主要发展过程四个方面对相关文献进行介绍和总结。最后,该文给出了几个未来的重点研究方向,包括跨视觉和语言模态的特征对齐、自动化评价指标的设计以及多样化图像描述生成。
  • 句法分析前沿动态综述 下载:36 浏览:306
  • 屠可伟 李俊 《当代中文学刊》 2020年12期
  • 摘要:
    句法分析的目标是分析输入句子并得到其句法结构,是自然语言处理领域的经典任务之一。目前针对该任务的研究主要集中于如何通过从数据中自动学习来提升句法分析器的精度。该文对句法分析方向的前沿动态进行了调研,分别从有监督句法分析、无监督句法分析和跨领域跨语言句法分析三个子方向梳理和介绍了2018—2019年发表的新方法和新发现,并对句法分析子方向的研究前景进行了分析和展望。
  • 融合实体描述及类型的知识图谱表示学习方法 下载:37 浏览:350
  • 杜文倩 李弼 程王瑞 《当代中文学刊》 2020年12期
  • 摘要:
    知识图谱在很多人工智能领域发挥着越来越重要的作用。知识图谱表示学习旨在将三元组中的实体和关系映射到低维稠密的向量空间。TransE、TransH和TransR等基于翻译操作的表示学习方法,只考虑了知识图谱的三元组信息孤立的学习表示,未能有效利用实体描述、实体类型等重要信息,从而不能很好地处理一对多、多对多等复杂关系。针对这些问题,该文提出了一种融合实体描述及类型的知识图谱表示学习方法。首先,利用Doc2Vec模型得到全部实体描述信息的嵌入;其次,对实体的层次类型信息进行表示,得到类型的映射矩阵,结合Trans模型的三元组嵌入,得到实体类型信息的表示;最后,对三元组嵌入、实体描述嵌入及实体类型嵌入进行连接操作,得到最终实体嵌入的表示,通过优化损失函数训练模型,在真实数据集上分别通过链接预测和三元组分类两个评测任务进行效果评估,实验结果表明新方法优于TransE、TransR、DKRL、SimplE等主流模型。
  • 融合图像注意力的多模态机器翻译模型 下载:34 浏览:316
  • 李霞1 马骏腾2 覃世豪2 《当代中文学刊》 2020年11期
  • 摘要:
    已有工作表明,融入图像视觉语义信息可以提升文本机器翻译模型的效果。已有的工作多数将图片的整体视觉语义信息融入到翻译模型,而图片中可能包含不同的语义对象,并且这些不同的局部语义对象对解码端单词的预测具有不同程度的影响和作用。基于此,该文提出一种融合图像注意力的多模态机器翻译模型,将图片中的全局语义和不同部分的局部语义信息与源语言文本的交互信息作为图像注意力融合到文本注意力权重中,从而进一步增强解码端隐含状态与源语言文本的对齐信息。在多模态机器翻译数据集Multi30k上英语—德语翻译对以及人工标注的印尼语—汉语翻译对上的实验结果表明,该文提出的模型相比已有的基于循环神经网络的多模态机器翻译模型效果具有较好的提升,证明了该模型的有效性。
  • 基于性格情绪特征的改进主题情感模型 下载:30 浏览:295
  • 李玉强1 黄瑜1 孙念1 李琳1 刘爱华2 《当代中文学刊》 2020年11期
  • 摘要:
    近年来,以微博为代表的社交媒体在情感分析中备受关注。然而,绝大多数现有的主题情感模型并没有充分考虑到用户性格特征,导致情感分析结果难尽人意。故该文在现有的JST模型基础上进行改进,提出一种基于时间的性格建模方法,将用户性格特征纳入主题情感模型中;鉴于微博数据包含大量的表情符号之类的特有信息,为了充分利用表情符号来提升微博情感识别性能,该文将情感符号融入JST模型中,进而提出了一种改进的主题情感联合模型UC-JST(Joint Sentiment/Topic Model Based on User Character)。通过在真实的新浪微博数据集上进行实验,结果表明UC-JST情感分类效果优于JST、TUS-LDA、JUST、TSMMF四种典型的无监督情感分类方法。
  • 基于句内注意力机制多路CNN的汉语复句关系识别方法 下载:38 浏览:305
  • 孙凯丽1 邓沌华2 李源1 李妙1 李洋1 《当代中文学刊》 2020年11期
  • 摘要:
    复句的关系识别是对分句间语义关系的甄别,是复句语义分析的关键,旨在从文本中识别句间的关系类型。非充盈态汉语复句存在隐式关系的特点给语义关系识别造成了困难。为了深度挖掘复句中隐含的语义信息,正确地实现关系分类,该文提出了一种基于句内注意力机制的多路CNN网络结构Inatt-MCNN。其中句内注意力机制模型是基于Bi-LSTM的,使其能够学习到句子的双向语义特征以及分句间的关联特征。同时,为了充分利用文本特征,联合使用卷积神经网络(CNN)对复句表示再次建模获得句子局部特征。与其他基于汉语复句语料库(CCCS)和清华汉语树库(TCT)的实验结果相比,该文方法的宏平均F1值为85.61%,提升约6.08%,平均召回率为84.87%,提升约3.05%。
  • 基于序列图模型的多标签序列标注 下载:28 浏览:319
  • 王少敬 刘鹏飞 邱锡鹏 《当代中文学刊》 2020年11期
  • 摘要:
    该文针对实际中存在对同一句话标注多种序列标签问题,定义了多标签序列标注任务,并提出了一种新的序列图模型。序列图模型主要为了建模两种依赖关系:不同单词在时序维度上面的关系和同一单词在不同任务之间的依赖关系。该文采用LSTM或根据Transformer修改设计的模型处理时序维度上的信息传递。同一单词在不同任务之间使用注意力机制处理不同任务之间的依赖关系,以获得每个单词更好的隐状态表示,并作为下次递归处理的输入。实验表明,该模型不仅能够在Ontonotes 5.0数据集上取得更好的结果,而且可以获取不同任务标签之间可解释的依赖关系。
  • 基于成分共享的英汉小句对齐语料库标注体系研究 下载:30 浏览:332
  • 葛诗利1 宋柔2 《当代中文学刊》 2020年11期
  • 摘要:
    英汉小句对齐语料库服务于英语和汉语小句的语法结构对应关系研究和应用,对于语言理论和语言翻译(包括人的翻译和机器翻译)有重要意义。前人的语法理论和相关语料库的工作对于小句复合体和小句的界定缺乏充分研究,在理论上有缺陷,难以支持自然语言处理的应用。该文首先为英汉小句对齐语料库的建设做理论准备。从近年提出的汉语小句复合体的理论出发,该文界定了成分共享的概念,基于话头共享和引语共享来界定英语的小句和小句复合体,使小句和小句复合体具有功能的完整性和单一性。在此基础上,该文设计了英汉小句对齐的标注体系,包括英语NT小句标注和汉语译文生成及组合。语料库的标注表明,在小句复合体层面上英汉翻译涉及到的结构变换,其部件可以限制为英语小句和话头、话体,无须涉及话头和话体内部的结构。基于这些工作的英汉小句对齐语料库为语言本体研究和英汉语言对比、英汉机器翻译等应用提供了结构化的标注样本。
  • 面向医疗文本的实体及关系标注平台的构建及应用 下载:38 浏览:286
  • 张坤丽1 赵旭2 关同峰1 尚柏羽2 李羽蒙1 昝红英1 《当代中文学刊》 2020年10期
  • 摘要:
    医疗文本数据是推行智慧医疗的重要数据基础,而医疗文本为半结构或非结构化数据,难以对其直接进行应用。对医疗文本中所包含的实体及实体关系进行标注是文本结构化的重要手段,也是命名实体识别、关系自动抽取研究的基础。传统的人工标注方法费力费时,已难以适应大数据发展的需求。该文以构建中文医学知识图谱的任务为驱动,构建了半自动化实体及关系标注平台。该平台融合多种算法,能够实现文本预标注、进度控制、质量把控和数据分析等多种功能。利用该平台,进行了医学知识图谱中实体和关系标注,结果表明该平台能够在文本资源建设中控制标注过程,保证标注质量,提高标注效率。同时该平台也被应用于其他文本标注任务,表明该平台具有较好的任务移植性。
  • 家谱文本中实体关系提取方法研究 下载:33 浏览:310
  • 任明1 许光2 王文祥2 《当代中文学刊》 2020年10期
  • 摘要:
    实现家谱资源的高效的组织和利用,需要从非结构化的家谱文本中提取实体及关系,进行结构化的表示。实体和关系的提取通常被作为序列标注任务来解决,输入的句子被映射到标签序列。针对家谱文本中实体和关系高度密集、关系重叠很常见的特点,该文构建了相应的概念模型来指导整个提取过程。在序列标注部分,该文在真实数据上检验了常用的深度学习模型的表现。实验结果显示,BERT-BiLSTM-CRF模型的精确率、召回率和F1值均优于所对比的其他模型,该文所提出的方法能够有效地解决家谱文本中的实体关系提取问题。
  • 基于远程监督的人物属性抽取研究 下载:41 浏览:358
  • 马进 杨一帆 陈文亮 《当代中文学刊》 2020年10期
  • 摘要:
    属性抽取的主要目标是从非结构化文本中获取实体的属性值。为了从文本中抽取出人物属性,通常需要大量的标注数据,然而这些数据资源却十分稀少。为了解决这个问题,该文从百科类网页的表格数据出发,构建了人物属性表,然后采用远程监督的方法得到大规模、多类别的人物属性标注语料,从而免去了人工标注的繁琐流程。针对新构建的数据集,分别使用条件随机场(CRF)和双向长短期记忆-条件随机场(BiLSTM-CRF)构建了属性抽取的两个基线模型。实验结果表明,BiLSTM-CRF取得比CRF更好的性能,其中BiLSTM-CRF的平均F1值为83.39%。
  • 用于文本分类的均值原型网络 下载:34 浏览:361
  • 线岩团1 相艳2 余正涛1 文永华1王红斌2 张亚飞1 《当代中文学刊》 2020年10期
  • 摘要:
    文本分类是自然语言处理的基本任务之一。该文在原型网络基础上,提出了按时序移动平均方式集成历史原型向量的均值原型网络,并将均值原型网络与循环神经网络相结合,提出了一种新的文本分类模型。该模型利用单层循环神经网络学习文本的向量表示,通过均值原型网络学习文本类别的向量表示,并利用文本向量与原型向量的距离训练模型并预测文本类别。与己有的神经网络文本分类方法相比,模型在训练和预测过程中有效利用了样本间的特征相似关系,并具有网络深度浅、参数少的特点。该方法在多个公开的文本分类数据集上取得了最好的分类准确率。
  • 面向多类型问题的阅读理解方法研究 下载:40 浏览:368
  • 谭红叶1 屈保兴2 《当代中文学刊》 2020年10期
  • 摘要:
    机器阅读理解是基于给定文本,自动回答与文本内容相关的问题。针对此任务,学术界与工业界提出多个数据集与模型,促使阅读理解取得了一定的进步,但提出的模型大多只是针对某一类问题,不能满足现实世界问题多样性的需求。因此,该文针对阅读理解中问题类型多样性的解答展开研究,提出一种基于Bert的多任务阅读理解模型,利用注意力机制获得丰富的问题与篇章的表示,并对问题进行分类,然后将分类结果用于任务解答,实现问题的多样性解答。该文在中文公共阅读理解数据集CAIL2019-CJRC上对所提模型进行了实验,结果表明,系统取得了比所有基线模型都要好的效果。
  • 阅读理解中观点类问题的扩展研究 下载:47 浏览:337
  • 张兆滨1 王素格1 陈鑫2 赵琳玲1 王典1 《当代中文学刊》 2020年9期
  • 摘要:
    在高考语文阅读理解中,观点类问题中的观点表达较为抽象,为了从阅读材料中获取与问题相关的答案信息,需要对问题中的抽象词语进行扩展,达到扩展观点类问题的目的。该文提出了基于多任务层级长短时记忆网络(Multi-HLSTM)的问题扩展建模方法。首先将阅读材料与问题进行交互注意,同时建模问题预测和答案预测两个任务,使模型对问题进一步扩展。最后将扩展后的问题与原问题同时应用于问题的答案候选句抽取中。通过在高考语文观点类的真题、模拟题以及DuReader的描述观点类数据集上进行实验,验证了本文的问题扩展模型对答案候选句的抽取性能具有一定的提升作用。
  • 一种基于CW-RNN的多时间尺度序列建模推荐算法 下载:33 浏览:17
  • 袁涛1 牛树梓2 李会元2 《当代中文学刊》 2020年9期
  • 摘要:
    序列化推荐试图利用用户与物品的历史交互序列,预测下次即将交互的物品。针对序列化推荐中推荐物品依赖于用户的长时间全局兴趣、中时间兴趣还是短时间局部兴趣的不确定性,该文提出了一种基于CW-RNN的多时间尺度序列建模推荐算法。首先,该算法引入CW-RNN层,从用户与物品的历史交互序列中抽取多个时间尺度的用户兴趣特征。然后,通过尺度维卷积来建模对不同时间尺度的用户兴趣特征的依赖,生成多时间尺度用户兴趣特征的统一表示。最后,利用全连接层建模统一的多尺度用户兴趣特征和隐式物品特征的交互关系。在MovieLens-1M和Amazon Movies and TV两个公开数据集上的实验结果表明,相比于现有最优的序列推荐算法,该文提出的算法在准确率上分别提升了3.80%和8.63%。
  • 基于局部语义相关性的定义文本义原预测 下载:42 浏览:319
  • 杜家驹1 岂凡超1 孙茂松2 刘知远3 《当代中文学刊》 2020年9期
  • 摘要:
    作为人类语言的最小语义单位,义原已被成功应用于许多自然语言处理任务。人工构造和更新义原知识库成本较大,因此义原预测被用来辅助义原标注。该文探索了利用定义文本为词语自动预测义原的方法。词语的各个义原通常都与定义文本中的不同词语的语义有相关关系,这种现象被称为局部语义相关性。与之对应,该文提出了义原相关池化(SCorP)模型,该模型能够利用局部语义相关性来预测义原。在HowNet上的评测结果表明,SCorP取得了当前最好的义原预测性能。大量的定量分析进一步证明了SCorP模型能够正确地学习义原与定义文本之间的局部语义相关性。
  • 结合特殊领域实体识别的远监督话语领域分类 下载:39 浏览:314
  • 何宇虹 黄沛杰 杜泽峰 刘威 朱建恺 章锦川 《当代中文学刊》 2020年9期
  • 摘要:
    近年来,基于注意力(attention)机制的循环神经网络在文本分类中表现出显著的性能。然而,当训练集数据有限时,测试集数据中许多领域实体指称项在训练集中处于低频,甚至从未出现,如中文话语领域分类任务。该文提出结合特殊领域实体识别的远监督话语分类模型。首先,通过远监督(distant supervision)的方式获取数据集中的领域知识,显著地减少了人工操作;其次,利用特殊领域实体识别和本地构建的补充性知识库去补全远监督获取的领域知识,旨在为模型提供更加全面的领域知识;最后,对基于上下文的语义特征和知识特征这两种异构信息提出了细粒度拼接机制,在词级上融合了预训练词汇语义表达和领域知识表达,有效提升了分类模型的性能。通过与研究进展的文本分类模型的对比实验表明,该文模型在中文话语领域分类基准数据集的实验上取得了较高的正确率,特别是在知识敏感型领域,较研究进展方法具有显著优势。
  • 面向儿科疾病的命名实体及实体关系标注语料库构建及应用 下载:28 浏览:321
  • 昝红英1 刘涛2 牛常勇1 赵悦淑2 张坤丽3 穗志方4 《当代中文学刊》 2020年9期
  • 摘要:
    当前医学语料库实体及实体关系的分类体系难以满足精准医学发展需求的问题,该文针对儿科疾病开展研究。在医学领域专家的指导下制定了适合儿科学的命名实体和实体关系的标注体系及详细标注规范;融合国内外相关医学标准资源,利用标注工具对298余万字儿科医学文本中实体及实体关系进行机器预标注、人工标注及人工校对,构建了面向儿科疾病的医学实体及关系语料库。所构建的语料库包含504种儿科常见疾病,共标注命名实体23 603个,实体关系36 513个,多轮标注一致性分别为0.85和0.82。基于该语料库构建了儿科医学知识图谱,并开发了基于知识图谱的儿科医学知识问答系统。
  • 基于历时语料库的在线词典编纂系统设计 下载:34 浏览:314
  • 吴先1 胡俊峰2 《当代中文学刊》 2020年8期
  • 摘要:
    语料库语言学是借助大规模语料库对语言现象进行发现、挖掘的学科,目前已经存在很多在线语料库辅助语言学的研究。该文提供了一个按时间分片进行管理的语料库,并基于此提出了一个由社区维护的在线词典编纂系统,该系统将语料库查询结果动态结合在被编辑的词条中。该文还介绍了一个多义词词义发现和层次化聚类算法,用以自动生成一个默认的词条框架。该文概述了词典编纂系统的总体情况,重点介绍系统的设计和使用方法。
加入编委加入审稿人
当代中文学刊  期刊指标
出版年份 2018-2025
发文量 673
访问量 116872
下载量 36587
总被引次数 342
影响因子 0.882
为你推荐