当代中文学刊
当代中文学刊
《当代中文学刊》系开放获取期刊,本刊是研究中国文学和文化的学术刊物,侧重于近代以来的文学和文化研究,鼓励中文学科内部各专业的贯通,倡导中文学科与其它人文社会科学的交融,以弘扬人文精神、提倡学术创新、促进学术繁荣为宗旨。本刊集学术性、思想性为一体,旨在给世界范围内的科学家、学者、科研人员提供一个传播、分享和讨论该领域内不同方向问题与成果交流的学术平台。

ISSN: 3008-0282

《当代中文学刊》在线投稿系统

*文章题目:
*作者姓名:
*电子邮箱:
*通讯地址:
*联系方式:

  备      注:

*上传稿件:

支持上传.doc,.docx,.pdf,.txt,.wps文件

投稿须知:

1、审稿结果将于1~7个工作日以邮件告知,请注意查收(包含录用通知书、审稿意见、知网CNKI查重报告)。

2、提交投稿后,若7个工作日之内未接到录用通知,则说明该文章未被录用,请另投他刊。

3、凡投寄本刊稿件,如在内容上有侵权行为或不妥之处,均应文责自负。本刊有权对来稿进行文字编辑、加工和修改,如不同意,请附说明,以便妥善处理。

4、多作者文稿署名时须征得其他作者同意,排好先后次序,通知用稿后不再改动。

5、凡投往本刊稿件一经录用发表,其版权归本刊所有。

6、本刊已全文录入中国知网、万方、维普等数据库,如作者不同意被收录,请提前申明,未申明者,本刊一律视为同意被收录。

7、请勿一稿多投。



提示文字!

注:我们将于1~7个工作日告知您审稿结果,请耐心等待;

您也可以在官网首页点击“查看投稿进度”输入文章题目,查询稿件实时进程。


  • 融合图像注意力的多模态机器翻译模型 下载:34 浏览:319
  • 李霞1 马骏腾2 覃世豪2 《当代中文学刊》 2020年11期
  • 摘要:
    已有工作表明,融入图像视觉语义信息可以提升文本机器翻译模型的效果。已有的工作多数将图片的整体视觉语义信息融入到翻译模型,而图片中可能包含不同的语义对象,并且这些不同的局部语义对象对解码端单词的预测具有不同程度的影响和作用。基于此,该文提出一种融合图像注意力的多模态机器翻译模型,将图片中的全局语义和不同部分的局部语义信息与源语言文本的交互信息作为图像注意力融合到文本注意力权重中,从而进一步增强解码端隐含状态与源语言文本的对齐信息。在多模态机器翻译数据集Multi30k上英语—德语翻译对以及人工标注的印尼语—汉语翻译对上的实验结果表明,该文提出的模型相比已有的基于循环神经网络的多模态机器翻译模型效果具有较好的提升,证明了该模型的有效性。
  • 基于性格情绪特征的改进主题情感模型 下载:30 浏览:295
  • 李玉强1 黄瑜1 孙念1 李琳1 刘爱华2 《当代中文学刊》 2020年11期
  • 摘要:
    近年来,以微博为代表的社交媒体在情感分析中备受关注。然而,绝大多数现有的主题情感模型并没有充分考虑到用户性格特征,导致情感分析结果难尽人意。故该文在现有的JST模型基础上进行改进,提出一种基于时间的性格建模方法,将用户性格特征纳入主题情感模型中;鉴于微博数据包含大量的表情符号之类的特有信息,为了充分利用表情符号来提升微博情感识别性能,该文将情感符号融入JST模型中,进而提出了一种改进的主题情感联合模型UC-JST(Joint Sentiment/Topic Model Based on User Character)。通过在真实的新浪微博数据集上进行实验,结果表明UC-JST情感分类效果优于JST、TUS-LDA、JUST、TSMMF四种典型的无监督情感分类方法。
  • 基于句内注意力机制多路CNN的汉语复句关系识别方法 下载:38 浏览:306
  • 孙凯丽1 邓沌华2 李源1 李妙1 李洋1 《当代中文学刊》 2020年11期
  • 摘要:
    复句的关系识别是对分句间语义关系的甄别,是复句语义分析的关键,旨在从文本中识别句间的关系类型。非充盈态汉语复句存在隐式关系的特点给语义关系识别造成了困难。为了深度挖掘复句中隐含的语义信息,正确地实现关系分类,该文提出了一种基于句内注意力机制的多路CNN网络结构Inatt-MCNN。其中句内注意力机制模型是基于Bi-LSTM的,使其能够学习到句子的双向语义特征以及分句间的关联特征。同时,为了充分利用文本特征,联合使用卷积神经网络(CNN)对复句表示再次建模获得句子局部特征。与其他基于汉语复句语料库(CCCS)和清华汉语树库(TCT)的实验结果相比,该文方法的宏平均F1值为85.61%,提升约6.08%,平均召回率为84.87%,提升约3.05%。
  • 基于序列图模型的多标签序列标注 下载:28 浏览:320
  • 王少敬 刘鹏飞 邱锡鹏 《当代中文学刊》 2020年11期
  • 摘要:
    该文针对实际中存在对同一句话标注多种序列标签问题,定义了多标签序列标注任务,并提出了一种新的序列图模型。序列图模型主要为了建模两种依赖关系:不同单词在时序维度上面的关系和同一单词在不同任务之间的依赖关系。该文采用LSTM或根据Transformer修改设计的模型处理时序维度上的信息传递。同一单词在不同任务之间使用注意力机制处理不同任务之间的依赖关系,以获得每个单词更好的隐状态表示,并作为下次递归处理的输入。实验表明,该模型不仅能够在Ontonotes 5.0数据集上取得更好的结果,而且可以获取不同任务标签之间可解释的依赖关系。
  • 基于成分共享的英汉小句对齐语料库标注体系研究 下载:30 浏览:333
  • 葛诗利1 宋柔2 《当代中文学刊》 2020年11期
  • 摘要:
    英汉小句对齐语料库服务于英语和汉语小句的语法结构对应关系研究和应用,对于语言理论和语言翻译(包括人的翻译和机器翻译)有重要意义。前人的语法理论和相关语料库的工作对于小句复合体和小句的界定缺乏充分研究,在理论上有缺陷,难以支持自然语言处理的应用。该文首先为英汉小句对齐语料库的建设做理论准备。从近年提出的汉语小句复合体的理论出发,该文界定了成分共享的概念,基于话头共享和引语共享来界定英语的小句和小句复合体,使小句和小句复合体具有功能的完整性和单一性。在此基础上,该文设计了英汉小句对齐的标注体系,包括英语NT小句标注和汉语译文生成及组合。语料库的标注表明,在小句复合体层面上英汉翻译涉及到的结构变换,其部件可以限制为英语小句和话头、话体,无须涉及话头和话体内部的结构。基于这些工作的英汉小句对齐语料库为语言本体研究和英汉语言对比、英汉机器翻译等应用提供了结构化的标注样本。
加入编委加入审稿人
当代中文学刊  期刊指标
出版年份 2018-2025
发文量 673
访问量 116872
下载量 36587
总被引次数 342
影响因子 0.882
为你推荐