中文研究
中文研究
《中文研究》系开放获取期刊,本刊旨在为从事语言文字研究的教学、科研工作者及语言文字爱好者提供优秀的精神产品。以传承文明,传承学术为使命,提倡学术创新,反映国内外本学科的最新研究成果。以繁荣人文社会科学研究,服务学科建设与发展,提升社会精神文明生态为办刊方针。

ISSN: 3007-9896

《中文研究》在线投稿系统

*文章题目:
*作者姓名:
*电子邮箱:
*通讯地址:
*联系方式:

  备      注:

*上传稿件:

支持上传.doc,.docx,.pdf,.txt,.wps文件

投稿须知:

1、审稿结果将于1~7个工作日以邮件告知,请注意查收(包含录用通知书、审稿意见、知网CNKI查重报告)。

2、提交投稿后,若7个工作日之内未接到录用通知,则说明该文章未被录用,请另投他刊。

3、凡投寄本刊稿件,如在内容上有侵权行为或不妥之处,均应文责自负。本刊有权对来稿进行文字编辑、加工和修改,如不同意,请附说明,以便妥善处理。

4、多作者文稿署名时须征得其他作者同意,排好先后次序,通知用稿后不再改动。

5、凡投往本刊稿件一经录用发表,其版权归本刊所有。

6、本刊已全文录入中国知网、万方、维普等数据库,如作者不同意被收录,请提前申明,未申明者,本刊一律视为同意被收录。

7、请勿一稿多投。



提示文字!

注:我们将于1~7个工作日告知您审稿结果,请耐心等待;

您也可以在官网首页点击“查看投稿进度”输入文章题目,查询稿件实时进程。

  • 基于深度学习和迁移学习的领域自适应中文分词 下载:30 浏览:412
  • 成于思1 施云涛2 《中文研究》 2019年3期
  • 摘要:
    为了提高专业领域中文分词性能,以及弥补专业领域大规模标注语料难以获取的不足,该文提出基于深度学习以及迁移学习的领域自适应分词方法。首先,构建包含词典特征的基于深度学习的双向长短期记忆条件随机场(BI-LSTM-CRF)分词模型,在通用领域分词语料上训练得到模型参数;接着,以建设工程法律领域文本作为小规模分词训练语料,对通用领域语料的BI-LSTM-CRF分词模型进行参数微调,同时在模型的词典特征中加入领域词典。实验结果表明,迁移学习减少领域分词模型的迭代次数,同时,与通用领域的BI-LSTM-CRF模型相比,该文提出的分词方法在工程法律领域的分词结果F1值提高了7.02%,与预测时加入领域词典的BI-LSTM-CRF模型相比,分词结果的F1值提高了4.22%。该文提出的分词模型可以减少分词的领域训练语料的标注,同时实现分词模型跨领域的迁移。
  • 一种面向生文本的事件同指消解神经网络方法 下载:42 浏览:491
  • 方杰 李培峰 朱巧明 《中文研究》 2019年3期
  • 摘要:
    事件同指消解在自然语言理解中是一项复杂的任务,它需要在理解文本信息的基础上,发现其中的同指事件。事件同指消解在信息抽取、问答系统、阅读理解等自然语言任务中均有重要作用。该文提出了一个事件同指消解框架,包括事件抽取(ENSNN)、真实性识别(ENSNN)和事件同指消解(AGCNN)三个部分。事件同指消解模型(AGCNN)利用注意力池化机制来捕获事件的全局特征,利用门控卷积抽取复杂语义特征,提高了事件同指消解的性能。在KBP 2015和KBP 2016数据集上的实验结果表明,该文提出的方法优于目前最优的系统。
  • 基于膨胀卷积神经网络模型的中文分词方法 下载:26 浏览:253
  • 王星 李超 陈吉 《中文研究》 2019年3期
  • 摘要:
    目前,许多深度神经网络模型以双向长短时记忆网络结构处理中文分词任务,存在输入特征不够丰富、语义理解不全、计算速度慢的问题。针对以上问题,该文提出一种基于膨胀卷积神经网络模型的中文分词方法。通过加入汉字字根信息并用卷积神经网络提取特征来丰富输入特征;使用膨胀卷积神经网络模型并加入残差结构进行训练,能够更好理解语义信息并提高计算速度。基于Bakeoff 2005语料库的4个数据集设计实验,与双向长短时记忆网络模型的中文分词方法做对比,实验表明该文提出的模型取得了更好的分词效果,并具有更快的计算速度。
  • 基于联合学习的跨领域法律文书中文分词方法 下载:32 浏览:320
  • 江明奇 严倩 李寿山 《中文研究》 2019年3期
  • 摘要:
    中文分词任务是自然语言处理的一项基本任务。但基于统计的中文分词方法需要大规模的训练样本,且拥有较差的领域适应性。然而,法律文书涉及众多领域,对大量的语料进行标注需要耗费大量的人力、物力。针对该问题,该文提出了一种基于联合学习的跨领域中文分词方法,该方法通过联合学习将大量的源领域样本辅助目标领域的分词,从而提升分词性能。实验结果表明,在目标领域标注样本较少的条件下,该文方法的中文分词性能明显优于传统方法。
  • 融合图结构与节点关联的关键词提取方法 下载:20 浏览:203
  • 马慧芳1,2 王双1 李苗1 李宁3 《中文研究》 2019年2期
  • 摘要:
    单篇文本的关键词提取可应用于网页检索、知识理解与文本分类等众多领域。该文提出一种融合图结构与节点关联的关键词提取方法,能够在脱离外部语料库的情况下发现单篇文本的关键词。首先,挖掘文本的频繁封闭项集并生成强关联规则集合;其次,取出强关联规则集合中的规则头与规则体作为节点,节点之间有边当且仅当彼此之间存在强关联规则时,边权重定义为关联规则的关联度,将强关联规则集合建模成关联图;再次,综合考虑节点的图结构属性、语义信息和彼此的关联性,设计一种新的随机游走算法计算节点的重要性分数;最后,为了避免抽取的词项之间有语义包含关系,对节点进行语义聚类并选取每个类的类中心作为关键词提取结果。通过设计关联图模型参数的选取、关键词的提取规模、不同算法对比3个实验,在具有代表性的中英文数据上证明了该方法能够有效提升关键词提取的效果。
  • 基于联合标注和全局推理的篇章级事件抽取 下载:71 浏览:405
  • 仲伟峰1 杨航1,2 陈玉博2 刘康2 赵军2 《中文研究》 2019年2期
  • 摘要:
    事件抽取可以帮助人们从海量的文本中快速、准确地获取感兴趣的事件知识。然而,目前事件抽取的研究主要集中在从单一句子中抽取事件,由于事件构成的复杂性和语言表述的多样性,多数情况下多句才能完整地描述一个事件。因此,从篇章中抽取出完整的结构化事件信息,显得更有价值和意义。该文首先利用基于注意力机制的序列标注模型联合抽取句子级事件的触发词和实体,与独立进行实体抽取和事件识别相比,联合标注的方法在F值上提升了1个百分点。然后利用多层感知机判断实体在事件中扮演的角色。最后,在句子级事件抽取的基础上,利用整数线性规划的方法进行全局推理,融合句子级事件信息,实现篇章级事件抽取,与基线模型相比,这种基于全局推理的篇章级事件抽取在F值上提升了3个百分点。
  • 结合注意力机制与双向LSTM的中文事件检测方法 下载:28 浏览:242
  • 沈兰奔 武志昊 纪宇泽 林友芳 万怀宇 《中文研究》 2019年2期
  • 摘要:
    事件检测是信息抽取领域的重要任务之一。已有的方法大多高度依赖复杂的语言特征工程和自然语言处理工具,中文事件检测还存在由分词带来的触发词分割问题。该文将中文事件检测视为一个序列标注而非分类问题,提出了一种结合注意力机制与长短期记忆神经网络的中文事件检测模型ATT-BiLSTM,利用注意力机制来更好地捕获全局特征,并通过两个双向LSTM层更有效地捕获句子序列特征,从而提高中文事件检测的效果。在ACE 2005中文数据集上的实验表明,该文提出的方法与其他现有的中文事件检测方法相比性能得到明显提升。
  • 基于ATT-IndRNN-CNN的维吾尔语名词指代消解 下载:26 浏览:411
  • 祁青山1 田生伟1 禹龙2 艾山·吾买尔2 《中文研究》 2019年2期
  • 摘要:
    该文提出一种基于注意力机制(attention mechanism,ATT)、独立循环神经网络(independently recurrent neural network,IndRNN)和卷积神经网络(convolutional neural network,CNN)结合的维吾尔语名词指代消解模型(ATT-IndRNN-CNN)。根据维吾尔语的语法和语义结构,提取17种规则和语义信息特征。利用注意力机制作为模型特征的选择组件计算特征与消解结果的关联度,结果分别输入IndRNN和CNN得到包含上下文信息的全局特征和局部特征,最后融合两类特征并使用softmax进行分类完成消解任务。实验结果表明,该方法优于传统模型,准确率为87.23%,召回率为88.80%,F值为88.04%,由此证明了该模型的有效性。
  • 面向机器学习的流式文档逻辑结构标注方法研究 下载:78 浏览:485
  • 刘倩 李宁 田英爱 《中文研究》 2019年2期
  • 摘要:
    针对采用机器学习方法识别流式文档结构时语料库稀少、语料标注复杂的问题,该文在研究文档的逻辑结构和编辑语义特征的基础上,确立流式文档逻辑结构标注体系,并提出一种三段式的半自动文档逻辑结构标注方法:第一阶段通过机助人工实现文档元数据的分离式标注,第二阶段自动重建逻辑结构,第三阶段自动填充特征向量。实验结果表明,该文提出的文档逻辑结构标注方法能够节省人工成本、提高机器学习算法对文档结构识别的准确率与召回率,F值达到97.5%。
  • 基于自动提取句法模板的情感分析 下载:36 浏览:326
  • 潘浩1 卫宇杰1,2 潘尔顺1,2 《中文研究》 2019年1期
  • 摘要:
    提出了一种自动化提取情感依存句法关系的分析方法。在待分析语句依存句法树的基础上,结合中文语法特点,定义了分枝、嫁接、剪枝和枝解四种基本操作,压缩依存树的特征空间的同时将语句转换成表征句法关系的子树集合,最后利用遗传算法求解最优情感子树集。针对第三届自然语言处理及中文计算会议(NLPCC 2014)评测数据的实验结果表明,该方法在语句是否表达情感的判别上具有优异效果。与基于词典的情感分析结合,可降低词典对客观句的高误判缺陷,进而明显改进基于词典的情感分析方法。
  • 基于循环实体网络的细粒度情感分析 下载:55 浏览:457
  • 贾川 方睿浦东 康刚 《中文研究》 2019年1期
  • 摘要:
    目前,深度神经网络模型已经在文本情感分析领域取得了较好的效果,但是对于属性相关的细粒度的情感分析任务,现有研究方法的效果仍有待改进。该文提出了一种基于循环实体网络来进行细粒度情感分析的方法,在网络中嵌入预定义的评价属性类别信息,利用扩大的内部记忆链来抽取与每个属性类别相关的情感特征,并通过动态记忆单元控制与属性相关情感信息的远距离依赖,然后,对于给定的单个属性类别,利用注意力机制从内部记忆链中抽取该属性类别的情感特征进行分类。该文提出的方法在Sentihood数据上与目前精度最高的方法相比,取得了近1个百分点的提升,而且模型的收敛速度更快。
  • 融合社交网络用户自身属性的信息传播数学建模与舆情演化分析 下载:80 浏览:53
  • 刘小洋 唐婷 何道兵 《中文研究》 2019年1期
  • 摘要:
    针对传统的社交网络信息传播模型极少将用户属性和信息特征这两个因素纳入到信息传播模型研究中的不足,该文提出了一种基于用户自身属性的信息传播模型。首先该文抽取用户影响力、用户态度、用户年龄、信息能量、信息价值等特征并构建交互规则;其次,根据这些特征建立信息传播的数学模型,模拟社交网络舆情演化过程;最后,为验证模型的有效性,开展了与真实事件的实证分析对比实验。实验结果表明:仿真结构与真实数据的相似度大于0.97,因而该模型符合社交网络舆情信息传播的特性,能够较为准确地描述社交网络中的舆情传播过程。
  • 基于文本和用户信息的在线评论质量检测 下载:50 浏览:394
  • 吴璠 王中卿 周夏冰 李寿山 周国栋 《中文研究》 2019年1期
  • 摘要:
    随着互联网的迅速发展,越来越多的用户评论出现在社交网站上。面对迅速增长的评论数据,如何为阅读评论的消费者提供准确、真实的高质量评论就显得尤为重要。评论质量检测旨在判断在线评论的质量,在传统的研究中,文本信息通常独立地被用于预测评论质量。但是在社交媒体上,每个文本之间不是独立的,而是可以通过发表文本的作者与其他文本相关联,即同一个用户或相近的用户发表的评论质量具有一定的相似性。因此,为了更好的构建文本的表示和研究文本之间基于用户的关联,该文基于神经网络模型分别构建用户和文本的表示,同时,为了放大用户信息的作用,我们进一步将基于注意力机制的用户信息融合到文本中,从而提高文本评论质量检测的效果。在Yelp 2013数据集上进行实验的结果表明,该模型能有效地提高在线评论质量检测的性能。
  • 图像标题生成中的人物类名实体填充方法研究 下载:47 浏览:355
  • 张家硕 洪宇 唐建 程梦 姚建民 《中文研究》 2019年1期
  • 摘要:
    得益于深度学习的发展和大规模图像标注数据集的出现,图像标题生成作为一种结合了计算机视觉和自然语言处理的综合任务得到了广泛关注。受到神经机器翻译任务的启发,前人将图像标题生成任务看作是一种特殊的翻译任务,即将一张图像视作源端的信息表述,通过编码解码过程,翻译为目标端的自然语言语句。因此,现有研究引入了端到端的神经网络模型,并取得了较好的生成效果。然而,图像标题生成研究依然面临许多挑战,其中最值得关注的难点之一是解决确切性文字表述的问题。一条确切的标题往往是有形且具体的表述,例如"梅西主罚点球",而目前机器生成的标题则较为粗浅和单调,例如"一个人在踢球"。针对这一问题,该文尝试开展标题生成的有形化研究,并在前瞻性实验中聚焦于标题中人名实体的识别与填充。在技术层面,该文将机器自动生成的图像标题作为处理对象,去除其中抽象人名实体的名称(例如,一个人、男人和他等)或错误的称谓,并将由此形成的带有句法空缺的表述视作完型填空题目,从而引入了以Who问题为目标的阅读理解技术。具体地,该文利用R-NET阅读理解模型实现标题中人名实体的抽取与填充。此外,该文尝试基于图像所在文本的局部信息和外部链接的全局信息,对人名实体进行抽取。实验结果表明,该方法有效提高了图像标题的生成质量,BLEU值相应提升了2.93%;实验结果也显示,利用全局信息有利于发现和填充正确的人名实体。
  • 基于细粒度词表示的命名实体识别研究 下载:26 浏览:337
  • 林广和1 张绍武1,2 林鸿飞1 《中文研究》 2018年12期
  • 摘要:
    命名实体识别(NER)是自然语言处理中的一项基础任务,其性能的优劣极大地影响着关系抽取、语义角色标注等后续任务。传统的统计模型特征设计难度大、领域适应性差,一些神经网络模型则忽略了词本身所具有的形态学信息。针对上述问题,该文构建了一种基于细粒度词表示的端到端模型(Finger-BiLSTM-CRF)来进行命名实体识别任务。该文首先提出一种基于注意力机制的字符级词表示模型Finger来融合形态学信息和单词的字符信息,然后将Finger与BiLSTM-CRF模型联合进行实体识别,最终该方法以端到端、无任何特征工程的方式在CoNLL 2003数据集上取得了F1为91.09%的结果。实验表明,该文设计的Finger模型显著提升NER系统的召回率,从而使得模型的识别能力显著提升。
  • 基于BiLSTM-CRF模型的汉语否定信息识别 下载:17 浏览:196
  • 1.重庆大学计算机学院;2.上海拍拍贷金融信息服务有限公司 《中文研究》 2018年12期
  • 摘要:
    否定信息识别是将自然语言中的肯定信息与否定信息分离,它对信息检索、文本挖掘、情感分析等都有重要作用。该文主要对汉语否定信息中的触发词识别和覆盖域识别进行研究,采用双向长短期记忆网络结合条件随机场(BiLSTM-CRF)为模型,预训练的词向量为输入特征对触发词进行识别,在此基础上添加已知触发词特征对覆盖域进行识别。中文否定与不确定信息语料上,触发词识别取得F1值为91.03%,覆盖域识别在该语料的子语料财经新闻上取得F1值最高为73.91%。实验结果表明,这一模型在汉语否定触发词识别和覆盖域识别上取得的效果优于CRF模型和BiLSTM模型。
  • 基于小波分析的特征提取文本分类方法研究 下载:61 浏览:330
  • 朱晋1 怀丽波1 崔荣一1 尹慧2 《中文研究》 2018年12期
  • 摘要:
    该文提出了基于小波分析的文本特征提取方法,对传统TF-IDF向量空间模型下的特征向量进行了该文的小波变换、逆小波变换。使用KNN分类方法检验这两空间下的文本分类准确率。实验结果表明,该文的小波变换方法在减少了TF-IDF向量空间模型近一半的维度下在各种实验条件中都能和向量空间模型保持一致的分类准确率;该文的逆小波变换方法在大幅度降低TF-IDF向量空间模型维度的基础上,同实验中其他特征提取方法相比,在特定条件下有着卓越的特定文本类别分类优势,这也在一定程度上检验了压缩感知理论的正确合理性。
  • 基于条件随机场的方志古籍别名自动抽取模型构建 下载:34 浏览:442
  • 李娜 《中文研究》 2018年12期
  • 摘要:
    近年来,我国数字图书馆发展迅速,为馆藏资源的深度挖掘和利用提供了基础。该文以数字化的方志古籍为研究语料,在全文人工标注的基础上,通过分析物产别名的内外部特征,构建基于条件随机场的别名自动抽取模型,精确率达到了93.52%。实验结果表明,条件随机场模型能够较好的应用于方志类古籍内容挖掘,为数字图书馆资源利用提供借鉴。
  • 维吾尔语词缀变体搭配规则研究及算法实现 下载:28 浏览:415
  • 艾孜麦提·艾尼瓦尔1,2,3 董军1,3 李晓1,3 《中文研究》 2018年12期
  • 摘要:
    该文介绍了维吾尔语词干结构特征、词缀结构特征及维吾尔语语音和谐律;以维吾尔语语音和谐律为基础,在充分考虑基本搭配规则和特殊规则的前提下,提出一种基于词干、词缀结构特征的维吾尔语词缀变体搭配算法;验证词干、词缀结构特征提取的正确性和完整性,并对500个名词词干和300个动词词干进行词缀变体搭配,分别生成9 000个名词和37 800个动词。借助维吾尔语文字校对系统和人工验证的方法,对生成的所有单词进行词缀变体搭配准确性验证;实验结果表明,名词和动词词干搭配词缀准确率分别为98.40%和96.49%,整体搭配准确率为96.86%;最后对搭配错误原因进行了分析。
  • 基于多篇章多答案的阅读理解系统 下载:43 浏览:402
  • 刘家骅1,2 韦琬2 陈灏2 杜彦涛2 《中文研究》 2018年11期
  • 摘要:
    机器阅读理解任务一直是自然语言处理领域的重要问题。2018机器阅读理解技术竞赛提供了一个基于真实场景的大规模中文阅读理解数据集,对中文阅读理解系统提出了很大的挑战。为了应对这些挑战,我们在数据预处理、特征表示、模型选择、损失函数的设定和训练目标的选择等方面基于以往的工作做出了对应的设计和改进,构建出一个最先进的中文阅读理解系统。我们的系统在正式测试集ROUGE-L和BLEU-4上分别达到了63.38和59.23,在105支提交最终结果的队伍里面取得了第一名。
加入编委加入审稿人
中文研究  期刊指标
出版年份 2018-2025
发文量 689
访问量 130587
下载量 39862
总被引次数 406
影响因子 1.192
为你推荐