请选择 目标期刊

融合深度学习和语义树的草图识别方法 下载:78 浏览:382

赵鹏 冯晨成 韩莉 纪霞 《人工智能研究》 2019年8期

摘要:
现有的草图识别框架利用整幅图像作为网络输入,草图识别过程可解释性较差.文中融合深度学习和语义树,提出草图语义网(Sketch-Semantic Net).首先对草图进行部件分割,将单幅完整的草图分割为多个具有语义概念的部件图.然后利用深度迁移学习识别草图部件.最后通过语义树的语义概念关联部件同部件所属草图对象类别,较好地弥补sketch图像从底层语义到高层语义之间的语义鸿沟.在广泛应用的草图分割数据集上的实验验证文中方法的有效性.
[1/1]
在线客服::点击联系客服
联系电话::400-188-5008
客服邮箱::service@ccnpub.com
投诉举报::feedback@ccnpub.com
人工客服

工作时间(9:00-18:00)
官方公众号

科技成果·全球共享