检 索
学术期刊
切换导航
首页
文章
期刊
投稿
首发
学术会议
图书中心
新闻
新闻动态
科学前沿
合作
我们
一封信
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
我要投稿
查看投稿进度
学术期刊
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
在线客服
客服电话:
400-188-5008
客服邮箱:
service@ccnpub.com
投诉举报:
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享
请选择
目标期刊
首页
期刊
文章
机床主轴承多源信息融合故障诊断
下载:
61
浏览:
242
刘胜
吴迪
李芃
《中国航空航天科学》
2018年3期
摘要:
针对机床主轴承的故障诊断,为解决传统方法仅由单一传感器数据分析准确性低的问题,提出基于主元小波包、递归神经网络以及振动及噪声信号多源数据融合的轴承故障诊断方法,实现对锻压机床主轴承的故障诊断。将振动及噪声传感器采集的信号,经主元小波包处理提取特征值,再利用递归神经网络进行局部故障诊断,得到不同传感器对轴承故障互相独立的故障证据,然后采用基于数据修正D-S证据理论将振动及噪声诊断结果融合,发现基于递归神经网络及数据修正D-S证据理论的诊断方法。该方法解决了单一传感器的不稳定性和局限性以及传统D-S证据理论冲突证据失效的问题,使故障诊断具备容错能力,提高了传统故障诊断的精确度。
[1/1]
|<
<
1
>
>|
在线客服::
点击联系客服
联系电话::
400-188-5008
客服邮箱::
service@ccnpub.com
投诉举报::
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享