检 索
学术期刊
切换导航
首页
文章
期刊
投稿
首发
学术会议
图书中心
新闻
新闻动态
科学前沿
合作
我们
一封信
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
我要投稿
查看投稿进度
学术期刊
按学科分类
Journals by Subject
按期刊分类
Journals by Title
医药卫生
Medicine & Health
工程技术
Engineering & Technology
数学与物理
Math & Physics
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
化学与材料
Chemistry & Materials
信息通讯
Information & Communication
地球与环境
Earth & Environment
生命科学
Life Sciences
在线客服
客服电话:
400-188-5008
客服邮箱:
service@ccnpub.com
投诉举报:
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享
请选择
目标期刊
首页
期刊
文章
基于局部二值模式与深度置信网络的人脸识别
下载:
36
浏览:
377
满忠昂1
刘纪敏2
孙宗锟1
《软件工程研究》
2020年12期
摘要:
针对现在的大多算法在提取人脸特征时直接提取整个人脸,而忽略局部的细节特征,提出一种将人脸图像进行分块局部运用LBP算子然后与深度置信网络结合的人脸识别算法(BPBN)。首先,将人脸图像进行分块,对分块后的图像提取LBP进行统计,将生成的LBP直方图按照一定秩序组合连接成新的特征向量。其次,将得到的LBP特征作为深度置信网络(DBN)的输入,采用贪婪算法逐层进行训练,然后用反向传播(BP)算法对训练得到的深度置信网络进行优化。最后,用训练好的深度置信网络对人脸进行识别。在ORL人脸数据库上进行实验,识别率达到96.0%,然后与传统的主成分分析(PCA)算法集成支持向量机(SVM)的方法进行相比,识别率有较为显著的提升,说明该方法具有更好的人脸识别效果。
[1/1]
|<
<
1
>
>|
在线客服::
点击联系客服
联系电话::
400-188-5008
客服邮箱::
service@ccnpub.com
投诉举报::
feedback@ccnpub.com
人工客服
工作时间(9:00-18:00)
官方公众号
科技成果·全球共享